A Cheap Implementation of Resugaring in
BIRDS based on Bidirectional Transformation

Xing Zhang!, Van-Dang Tran*2, and Zhenjiang Hu?*?

! Nankai University, China
2 National Institute of Informatics, Japan
3 Peking University, China
4 The Graduate University for Advanced Studies, SOKENDAI, Japan

Abstract. Syntactic sugar refers to a certain syntactic structure added
to the programming language. This syntactic structure has no effect on
the function of the language, but is more convenient for programmers to
use. Since syntactic sugar will be translated to the basic syntactic struc-
ture of the core language at the compilation stage, the relationship be-
tween the source program written with syntactic sugar and the execution
of the core program is masked, and the compiled program is unfamiliar
to programmers. It is not convenient for programmers to learn and debug
source programs written with syntactic sugar. To solve that problem, this
paper adopts the idea of resugaring for automatically transforming the
evaluation sequence of the core language into the evaluation sequence of
the surface language, and gives a cheap implementation using the exist-
ing bidirectional transformation tool BIRDS. The resugaring algorithms
for both non-recursive and recursive desugaring transformations are im-
plemented using Datalog, and the solutions to maintain two important
properties of emulation and abstraction in the process of resugaring are
studied.

Keywords: Desugaring - Resugaring - Bidirectional Transformation -
BIRDS.

1 Introduction

Syntactic sugar plays an important role in extending a core language to a surface
language with more user-friendly language constructs. The core language may
be a small language with a simple syntactic structure but powerful functions,
and it can be enriched to a surface language with additional syntactic sugars.
A syntactic sugar can be defined by a set of desugaring rules, describing how it
can be mapped to the core language. For instance, the following desugaring rule
defines the syntax sugar Or, showing how to transform a surface term with Or
to a core term with Let.

Or([z, y, ys..]) — Let([Bind(“t”, z)], [IE(IA(“¢”), 1d(“¢”), Or([y, ys...]))])

This work is partially supported by the Japan Society for the Promotion of Science
(JSPS) Grant-in-Aid for Scientific Research (S) No. 17H06099.

2 Xing Zhang et al.

One problem with syntactic sugars is that after the desugaring, the result-
ing programs (in the core language) become unfamiliar to programmers, and it
obscures the relationship between the user’s source program and the program
being evaluated. To resolve this problem, the resugaring technique was proposed
to lift the core evaluation sequence into one for the surface [17]. Given a surface
term which can be desugared to a core term, resugaring is the process of adding
syntactic sugars each step after the reduction of the corresponding desugared
core term, in order to obtain an evaluation sequence expressed in surface lan-
guage. When applied debugging and comprehension tools to core language terms
resulting from desugaring, their output is also in terms of the core language. Re-
sugaring can establish correspondence with the surface language that the user
employs, so as to facilitate the use of those tools on the surface language[17].
Resugaring should satisfy the following two properties.

- Emulation. Each term in the generated surface evaluation sequence desug-
ars into the core term which it is meant to represent.

- Abstraction. Code introduced by desugaring is never revealed in the surface
evaluation sequence, and code originating from the original input program
is never hidden by resugaring.

However, implementation of resugaring needs much effort. We need to im-
plement both desugaring and resugaring carefully to make sure that they are
consistent satisfying the emulation property. As pointed out in [17], this pair of
transformations between terms of the core and the surface languages forms a
bidirectional transformation; taking the surface program as the source and the
core language as the view, then the forward transformation is desugaring, and
the putback transformation is resugaring. This inspired us to consider a direct
use of a bidirectional transformation language to implement resugaring (together
with desugaring) so that the consistency between desugaring and resugaring is
guaranteed for free. Furthermore, if we adopt to use a putback-based bidirec-
tional language, where the forward transformation can be automatically derived
from the putback transformation, by writing a resugaring program, a desugaring
program can be automatically generated.

In this paper, we present a new implementation of resugaring using the
putback-based bidirectional transformation tool called BIRDS (Bidirectional
Transformation for Relational View Update Datalog-based Strategies) [20]. We
use the BIRDS tool to develop the resugaring transformation, and automati-
cally generate the corresponding desugaring transformation. Our main technical
contributions are summarized as follows.

— We present a new implementation of resugaring using BIRDS based on bidi-
rectional transformation. Our method is simpler and only needs to develop
and maintain resugaring, which is in sharp contrast to the traditional method
that needs to develop and maintain both desugaring and resugaring. Fur-
thermore, our implementation satisfies the emulation property for free, and
meets the abstraction property.

Cheap Implementation of Resugaring 3

Fig. 1. Bidirectional Transformation

— We show how syntax trees can be uniformly represented by relational tables,
and how tree transformations (including pattern matching and substitution)
can be efficiently implemented over relational operations in Datalog. This
enables us to use BIRDS to implement a resugaring system, which integrates
rule checking, desugaring and resugaring, and algebraic stepper [5, 6].

— Compared to the traditional implementation method, which uses about 1000
lines of codes in Haskell, our new method successfully implements the resug-
aring transformation using less than 200 lines of codes in Datalog for the
same algorithm. Our method is powerful enough to deal with many difficult
cases such as recursive syntactic sugars.

The remainder of this paper is organized as follows. After presenting some
basic notions in Section 2, we propose an algorithm for performing resugaring
using a view update strategy in Section 3. Section 4 shows how to maintain the
emulation and abstraction in our implementation. Section 5 gives some examples,
Section 6 summarizes related works, and Section 7 concludes this paper.

2 Preliminaries

2.1 Bidirectional Transformation

A bidirectional transformation (BX) [11] is a pair of a forward transformation
get and a backward (putback) transformation put (see Fig. 1). The forward
transformation get is a query over a source S that results in a view V. The
putback transformation put takes the original S and an updated view V' as
input to produce a new source S’. To ensure consistency between the source
database and the view, get and put must satisfy the following round-tripping
properties, called GetPut and PutGet:

VS, put(S, get(S)) = S (GetPut)
VS, V' get(put(S, V') =V’ (PutGet)

The GetPut property ensures that unchanged views correspond to unchanged
sources. The PutGet property ensures that all view updates are completely em-
bedded into the source such that the updated view can be computed again from
the forward transformation get over the updated source.

4 Xing Zhang et al.

% Schema declaration

source s1(‘X’:int, ‘Y’:int).

source s (‘X’:int, ‘Y’:int).

view v(‘X’:int, ‘Y’:int).

% View update strategy rules

-51(X,Y) :- s1(X,Y), not v(X,Y).

-52(X,Y) :- s2(X,Y), not v(X,Y).

+s51(X,Y) :- v(X,Y), not s1(X,Y), not s2(X,Y).

O~ O T W+

Fig. 2. A program in BIRDS

2.2 Bidirectional Programming with Datalog

We follow [20] and employ the BIRDS framework [1] to use the Datalog language
with extensions for programming putback transformations, i.e. view update
strategies. BIRDS [20] supports putback-based bidirectional programming [10,
13,12]. In other words, the framework automatically checks the well-behavedness
of a putback program written by the user and generates the corresponding for-
ward (get) one for free. BIRDS further optimizes the user-written programs
before compiling them into lower-level code.

Consider two base tables s1(X,Y) and s2(X,Y) and a view v(X,Y’), which
is expected to be a union over s; and s3. A program of view update strategy
accepted by BIRDS consists of two essential parts: schema declaration and view
update strategy rules. Figure 2 shows an example of the program, where s1, s
and v are all binary relations with the same attributes ‘X’ and ‘Y’. The first
two rules (Lines 6 and 7) of the view update strategy say that if a tuple (X,Y)
is in s or sp but not in v, it will be deleted from s; or sy, respectively. The last
rule says that if a tuple (X,Y) is in v but in neither s; nor so, it will be inserted
to s1. BIRDS will automatically check the validity of the program and generate
a view definition, i.e., forward transformation, as the following.

v(X,Y) :— s1(X,Y).
v(X,Y) = s2(X,Y).

3 Resugaring as Putback Transformation

In this section, we shall explain how to write resugaring as a putback trans-
formation (view update strategy), and how to use the BIRDS tool to run it
and to automatically generate the corresponding desugaring program. We have
implemented the complete putback program using Datalog.

3.1 Converting Syntax Trees to Relational Tables

Since BIRDS works only on relational database, the first step to use BIRDS is to
convert syntax trees into relations (tables). This can be done straightforwardly,

https://github.com/nksezx/ResugaringAsPutback /blob/master/putback.dl

Cheap Implementation of Resugaring 5

Cor>
C: D
CGOCD

parent Ichild rchild
1 1 =il

o u A WwN
0| 0w |0 @

= =

= O s A

Fig. 3. Converting Syntax Trees to Relational Tables

because syntax trees can be considered as graphs, and graphs can be naturally
represented by edge tables describing relationship between nodes. In order to
facilitate the traversal and compress tables, we convert each abstract syntax
tree into a binary tree, because the binary tree will have a fixed number of
columns after it is expressed as a relational table.

As shown in Fig. 3, the syntax tree of Or([1,2]) is first converted into a binary
tree. Then, we give each node a unique number and use the relational table to
record the left and right child of each node. In this way, the relational table can
be used to concisely represent syntax trees.

3.2 Designing Source and View Tables

To use BIRDS, we need to design source tables that represent the surface pro-
grams (surface terms) and transformation rules and the view tables that repre-
sent the core programs (core terms). A good relational table design can make
the update strategy easier to write. In our system, we have the following five
tables.

node. The node table records the information of all nodes in the patterns and
terms. As shown in Table 1, Id is a unique key assigned to the created node in
the semantic analysis. There are three types of nodes: keyword nodes, constant
nodes, and variable nodes. There are three types of nodes in patterns (terms
with variables) and only two in terms, which are keyword nodes and constant
nodes. Name is the value of the node, which is a string. Root means the id of
the root in the syntax tree.

PAst, sAst and cAst. These three tables are used to record the edge rela-
tionships of the syntax tree for patterns, surface syntax trees and core syntax
trees. They are of the same schema as shown in Table 2: Par is the id of the

6 Xing Zhang et al.

Table 1. The Node Table

idinumber| name:string |type:string|root:number
1 Or/And/: keyword 1
2 123/Empty/true| constant 1
3 x/y/z variable 1

Table 2. The pAst Table

par:number (Ichild:number|rchild:number
5 6 -1
6 -1 -1

parent node of each group, while Ichild is the id of its left child and rchild is the
id of its right child. -1 means the node is missing.

The pAst table is to store all patterns. Consider the pattern of (Delay x). It
is shown in Figure 4, where only two nodes Delay and x are included, and the
ids of the two nodes are 1 and 2, respectively. The x node is the left child node
of Delay, so we have (1, 2, -1) and (2, -1, -1) in Table 2. The cAst view and the
sAst source respectively record the edge relationships in the core term and the
generated surface term. And their fields are exactly the same as the pAst source,
which represents the two patterns before and after transformation in all rules.

rule. The transformation rules are recorded in the rule table as shown in Ta-
ble 3. The id of the root in the syntax tree uniquely represents the corresponding
pattern. Let LHS represent the surface syntax pattern on the left side of the
transformation rule, and RHS the core syntax pattern on the right side. Then,
for the rule described in Figure 5, the id of the LHS is 1, and the id of the RHS
is 5, so we store (1, 5) in rule table in Table 3.

3.3 Non-recursive Resugaring

Resugaring is to turn a core term back to a surface term by reversely applying
transformation rules. Non-recursive resugaring refers to the case where the core
term will be transformed back to at most one syntactic sugar and at most once.

Matching. Matching is to match the core term with the RHSs of the transfor-
mation rules, so as to obtain the rules used in the resugaring and the mapping
relationship between variables in patterns and bindings in the core term.

There are three types of nodes in the pattern, but there are only two types in
the term. Therefore, after a simple combination, there are four cases (in Table 4)
that meet the matching conditions. If the types of the pattern node and the term
node are constants or keywords, then the matching succeeds when the names of
the two are the same. If the pattern node is a variable, then the term node can be
a constant node or a keyword node, because the variable can match a constant
or sub-expression.

Cheap Implementation of Resugaring 7

LHS
1:Or RHS
/ 5:Delay

/ 6:x

5:Delay 3ix
/ N
4:Empty
6:x
Fig. 4. A pattern Fig. 5. A Transformation Rule

Table 3. rule source

lhs:number|rhs:number
1 5

The matching algorithm consists of three steps: the first step is to recursively
try to match starting from the root of the core term and the root of all RHS
patterns; the second step is to determine the RHS that the core term completely
matched, thereby we can determine the transformation rule that can be used; the
third step is to extract the information needed for the subsequent substitution
algorithm. Algorithm 1 describes the matching algorithm in detail with a specific
example. The core term and related transformation rule are shown in Figure 6.

As shown in Figure 7, when the root of the term matches the root of the
RHS, we will continue matching their left child and right child respectively, so
the first step of matching is a recursive process. In the second step, we found
that all the nodes of the above RHS were successfully matched to the term node
in the first step, so we think that the matching was successful. So in the third
step, we determined the corresponding LHS and the bindings corresponding to
the variables in the LHS, namely {z — 1, y — 2 ys — Empty}.

Substitution Substitution refers to the process of replacing the variables in the
LHS determined in the matching with the corresponding bindings to obtain the
final surface term.

3.4 Recursive Resugaring

Recursive resugaring refers to the case where the core term will use multiple
syntactic sugars.

Matching Sub-term is a collection of partial nodes in the binary tree of the
core term. These nodes can reach each other through their common edges. The
meta term is a special sub-term, and its nodes can be bijective with all the nodes
of a certain pattern. Therefore, the object of recursive resugaring is a core term

8 Xing Zhang et al.

Table 4. Matching Conditions

Pattern Node|Term Node
keyword keyword

constant constant
variable keyword
variable constant

Algorithm 1 Matching Algorithm

def matching(CoreTerm)
// step 1
foreach RHS in RHSs
PROOT = Root ID of RHS
TROOT = Root ID of CoreTerm
trymatch(PROOT, TROOT)
// step 2
check()
// step 3
insert rule which RHS is ’completely matched’ into ‘state’
if size of ‘state’ == 0:
Raise('match failed!”)
return
foreach (PID, TID, RHS) in ‘matched*:
if RHS is ’completely matched’ and type of PID is ’variable’
insert (PID, TID) into ‘env*
foreach TID exists in ‘env*
insert subtree of TID into ‘value’

with multiple meta terms. The core idea of the recursive transformation algo-
rithm is to match each sub-term in parallel, so the matching should not only
start from the root of the binary tree of the core term, but should try from
each node. Starting from a certain node, the part of the nodes that successfully
matches a pattern is a meta term.

The following uses an example to explain the recursive resugaring process in
detail. As shown in Figure 8, The nodes of the three colors of blue, gray and
orange are the meta terms matching three different patterns respectively. We no
longer only match from the root If, but each node of the core term can be used
as the root to match with roots of patterns. From this, we can determine that
the following rules will be used in transformation.

And([x, y, ys ...]) = If(x, And([y, ys ...]), False)
Or([x, v, ys ...]) — Let([Bind("t”, x)], [If(Id("t”), Id("t”), Or([y, ys ...]))])
If(x,y,2) — If(x,y,z) (a special rule, see 4.2)

Expansion In Matching, we can determine the patterns to be converted from
the patterns which meta terms successfully matched. In the expansion, we com-
bine the determined patterns according to the positional relationship suggested

Cheap Implementation of Resugaring 9

Core Term Transformation Rule

Let([Bind("t", 1)], [If(1d("t"), Id("t"), Or([2]))]) Let([Bind("t", x)], [If(1d("t"), Id("t"), Or(ly, ys ...1))])

Fig.6. A Core Term and A Transformation Rule

Core Term
step 1

step 2

step 3
step 4

Let([Bind("t", 1)], [If(1d("t"), Id("t"), Or([2]))]) Let([Bind("t", x)], [If(Id("t"), 1d("t"), Or(ly, ys ...1))])

Fig. 7. Matching

by the core term into a combined pattern. In the previous example, we combined
the target patterns as shown in Figure 9.

Substitution The substitution process here is consistent with non-recursive
resugaring which replaces variables in the combined pattern with bindings.

4 Two Properties

4.1 Checking Transformation Rules for Preserving Emulation

Emulation means that the surface terms obtained by resugaring maintain the
same semantics as the corresponding core terms. In other words, the surface term
obtained after resugaring can be desugared to the corresponding core term again.

10 Xing Zhang et al.

If(x, y, z) Core Term If(x, And([y, ys ...]), false)
If = ;f
< R "
y not
Let > z false 1 (
2 Leit
(Bind)
S N P Bind —
Ot O Empty O If
S < . e) Comm)
X Id Empty

3 1d Empty

Let([Bind("t", x)],)
i COr

Weey, o v or
d("t"), =
or(ly, ys ...1)) Cy

Empty

Fig. 8. Matching

In fact, this is also the PutGet property that the bidirectional transformation
program needs to satisfy. Therefore, BIRDS can ensure that a single transfor-
mation rule satisfies emulation, but cannot guarantee the situation of multiple
transformation rules. Some transformation rules will violate the emulation. For
example, we use the following transformation rules to resugar Max([—oc]).

Max([]) — Raise(“empty list”);
Max(zs) — MaxAcc(zs, —00);

The following core language evaluation sequence will be obtained.
MaxAcc([—o0], —00) = MaxAcc([], —0)

After adding sugar to them, we will obtain the following surface language eval-
uation sequence:

Max([~oc]) = Max([))

But Max([]) should be desugared to the error message, instead of the second step
of the core language evaluation sequence. But with the following transformation
rules, the above problems will not occur.

Max([]) — Raise(“empty list”);
Max(z : xs) — MaxAcc([z, s, ...], —00)

Therefore, we need to check whether there is any overlap among the trans-
formation rules. If there is any overlap, the rules are invalid, otherwise they are
valid. In Figure 10, the first group has overlap, but the second group does not
have any overlap.

Cheap Implementation of Resugaring 11

If(x,y,z) If <X ,,L;)

Y Oy vs D) -

2 Cys)

Fig. 9. Expansion

Fig. 10. Match the LHSs with Each Other

4.2 Maintaining Abstraction

Abstraction means that the code obtained by desugaring will not be leaked in
the output surface language program, and at the same time, the program in
the original input cannot be resugared. If the surface term itself uses some core
language syntax, such as ”If”:

Let([Bind(“t”, not(false))], [LE(IA(“t”), Id(“t”), Or([true]))]).

After reduction, we hope that it will not be converted during resugaring, that
is, Or ([not(true), true]) cannot be obtained.

Our solution is to treat the core syntax rules as special transformation rules
with the same LHS and RHS. We mark the roots that match the core syntax rules
with a “fixed” label, and the stepper will retain the labels during the reduction.
In the above example, since this surface language will match core syntax rule of
Let, we add “fixed” tag in front of Let. Then, in resugaring, the marked nodes
will not be used to match with RHSs. That is to say, the above core term will
not match the RHS of Or syntactic sugar, so we can maintain abstraction during
transformation.

12 Xing Zhang et al.

Num | Surface Language Evaluation Sequence Core Language Evaluation Sequence

1 And([If(not(false), 1, 2), Or((3, 4])]) If(
(Tag Fixed If(not(false), 1, 2)),
And([
Let([Bind(“t”, 3)], [If(Id(“t”), Id(“t”), Or([4])]))
I
false

)
2 And([If(true, 1, 2), Or([3, 4])]) If(

(Tag Fixed If(true, 1, 2)),
And(
Let([Bind(“t”, 3)], [If(Id(“t"), Id(“t”), Or([4]))])
D
false

)
3 | And(@, or(s, 41 I

1,
And(

Let([Bind(“t”, 3)], [If(Id(“t”), Id(“t"), Or([4]))]))
D
false
)
4 / And([

Let([Bind(“t”, 3)], [If(Id(“t"), Id(“t"), Or([4]))])
D

5 Or([3,4]) Let([Bind(“t”, 3)], [If(Id(“t"), Id(“t"), Or([4])])
6 / 13, 3, Or([4]))
7 3 3

Fig. 11. Resugaring

5 An Example

We show an example of our resugaring. As shown in Figure 11, except for the
fourth and sixth steps, other core terms have the corresponding surface terms
after resugaring, and satisfy emulation and abstraction. For example, the second
step of the core language evaluation sequence is the result after not(false) is
evaluated as true. Resugaring adds And and Or syntactic sugar to the second
step of core to get the second step of surface.

6 Related Work

Bidirectional transformation (bx) is a mechanism used to maintain the consis-
tency of two (or more) related sources of information. Researchers from many
different fields, including software engineering [18, 2], programming languages [7,
15], databases [3,4] and document engineering, are actively studying the use of
bx to solve various problems [8]. Our work shows the application of bx in pro-
gramming language transformation.

The view update problem is a classical problem that has a long history in
database research. A typical language of the putback-based approach is BIGUL [14,
12], which supports programming putback functions declaratively while auto-
matically deriving the corresponding unique forward transformation. Based on
BiGUL, Zan et al. [21] design a putback-based Haskell library for bidirectional

Cheap Implementation of Resugaring 13

transformations on relations. But only [20] can run in database environments,
which provides us with great convenience for language transformation on rela-
tional tables.

Data interoperability addresses the ability of systems and services that create,
exchange and consume data to have clear, shared expectations for the contents,
context and meaning of that data [9]. Because our approach solves the prob-
lem of correlation between the surface language and the core language being
executed, the above problem is a typical problem of maintaining data interop-
erability. Many methods have been proposed to solve the problem. One method
is to manually redefine the semantics based on the surface language, which un-
dermines the benefits provided by the small core. The other is to use source
tracking [19], but this is actually not a solution: users will still only see the
core language after desugaring. In addition, creating a one-time solution for a
given language is not suitable for those languages where users can create other
syntactic sugar in the program itself, such as Lisp language [16].

Resugaring [17] is currently the most effective method. The traditional imple-
mentation method is to write two programs, namely, desugaring and resugaring,
and then use string processing to transform the programming language. And we
use the BIRDS [20] to automatically generate the desugaring program through
the resugaring program, and convert the processing of the string into the oper-
ation of the relational table.

7 Conclusions

In this paper, we propose a new implentation method for resugaring, which can
greatly reduce the difficulty of implementation. Not only did we propose to use
the bidirectional transformation tool BIRDS to write the resugaring algorithm,
but also presented a new solution to maintain emulation and abstraction during
the transformation.

In the future, firstly, we intend to generalize the transformation algorithms
on syntax trees by using more general bidirectional transformation on trees.
Secondly, the tree is a special case of graph, and the relational table operation
for the graph pattern and the tree pattern is not much different, so we intend to
generalize the algorithm to the bidirectional transformation of the graph pattern.

References

1. BIRDS. https://dangtv.github.io/BIRDS/

2. Antkiewicz, M., Czarnecki, K.: Design Space of Heterogeneous Synchronization,
pp. 3-46. Springer Berlin Heidelberg (2008)

3. Bancilhon, F., Spyratos, N.: Update semantics of relational views. ACM Trans.
Database Syst. 6(4), 557-575 (Dec 1981)

4. Bohannon, A., Pierce, B., Vaughan, J.: Relational lenses: A language for updatable
views. pp. 338-347 (01 2006)

5. Clements.: Portable and high-level access to the stack with Continuation Marks.
Ph.D. thesis, Northeastern University (2006)

14

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Xing Zhang et al.

Clements, J., Flatt, M., Felleisen, M.: Modeling an algebraic stepper. In: Program-
ming Languages and Systems, 10th European Symposium on Programming, ESOP
2001 Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings. Lecture Notes
in Computer Science, vol. 2028, pp. 320-334. Springer (2001)

Culpepper, R., Felleisen, M.: Debugging hygienic macros. Science of Computer
Programming 75(7), 496 — 515 (2010), generative Programming and Component
Engineering (GPCE 2007)

Czarnecki, K., Foster, N., Hu, Z., Lammel, R., Schiirr, A., Terwilliger, J.: Bidirec-
tional transformations: A cross-discipline perspective. vol. 5563, pp. 260-283 (06
2009)

Dell’Erba, M., Fodor, O., Ricci, F., Werthner, H.: Harmonise: A Solution for Data
Interoperability, pp. 433-445. Springer US (2003)

Fischer, S., Hu, Z., Pacheco, H.: A clear picture of lens laws - functional pearl.
In: Mathematics of Program Construction - 12th International Conference, MPC
2015, Konigswinter, Germany, June 29 - July 1. vol. 9129, pp. 215-223. Springer
(2015)

Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt, A.: Combinators
for bi-directional tree transformations: a linguistic approach to the view update
problem. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005, Long Beach, California, USA,
January 12-14. pp. 233-246 (2005)

Ko, H.S., Hu, Z.: An axiomatic basis for bidirectional programming. Proc. ACM
Program. Lang. 2(POPL) (Dec 2017). https://doi.org/10.1145/3158129

Ko, H., Zan, T., Hu, Z.: Bigul: a formally verified core language for putback-based
bidirectional programming. In: Proceedings of the 2016 ACM SIGPLAN Workshop
on Partial Evaluation and Program Manipulation, PEPM 2016, St. Petersburg, FL,
USA, January 20 - 22, 2016. pp. 61-72 (2016)

Ko, H.S., Zan, T., Hu, Z.: Bigul: A formally verified core language for putback-
based bidirectional programming. In: Proceedings of the 2016 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation. p. 61-72. PEPM ’16
(2016)

Krishnamurthi, S., Erlich, Y.D., Felleisen, M.: Expressing structural properties
as language constructs? In: Programming Languages and Systems. pp. 258-272.
Springer Berlin Heidelberg (1999)

Lapalme, G.: Implementation of a “lisp comprehension” macro. SIGPLAN Lisp
Pointers IV (2), 16-23 (Apr 1991). https://doi.org/10.1145/121983.121985
Pombrio, J., Krishnamurthi, S.: Resugaring: lifting evaluation sequences through
syntactic sugar. In: ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014.
pp. 361-371. ACM (2014)

Schiirr, A.: Specification of graph translators with triple graph grammars. In:
Graph-Theoretic Concepts in Computer Science. pp. 151-163. Springer Berlin Hei-
delberg (1995)

Tirkel, A., Rankin, G., van Schyndel, R., Ho, W., Osborne, C.: Electronic water-
mark (12 1993)

Tran, V.D., Kato, H., Hu, Z.: Programmable view update strategies on relations.
PVLDB 13(5), 726-739 (2020)

Zan, T., Liu, L., Ko, H.S., Hu, Z.: Brul: A putback-based bidirectional transfor-
mation library for updatable views. In: Bx@ETAPS (2016)

