
41

Fusing Direct Manipulations into Functional Programs

XING ZHANG, Peking University, China
RUIFENG XIE, Peking University, China
GUANCHEN GUO, Peking University, China
XIAO HE∗, University of Science and Technology Beijing, China

TAO ZAN, Longyan University, China

ZHENJIANG HU, Peking University, China

Bidirectional live programming systems (BLP) enable developers to modify a program by directly manipulating

the program output, so that the updated program can produce the manipulated output. One state-of-the-art

approach to BLP systems is operation-based, which captures the developer’s intention of programmodifications

by taking how the developer manipulates the output into account. The program modifications are usually hard

coded for each direct manipulation in these BLP systems, which are difficult to extend. Moreover, to reflect

the manipulations to the source program, these BLP systems trace the modified output to appropriate code

fragments and perform corresponding code transformations. Accordingly, they require direct manipulation

users be aware of the source code and how it is changed, making “direct” manipulation (on output) be “indirect”.

In this paper, we resolve this problem by presenting a novel operation-based framework for bidirectional

live programming, which can automatically fuse direct manipulations into the source code, thus supporting

code-insensitive direct manipulations. Firstly, we design a simple but expressive delta language DM capable

of expressing common direct manipulations for output values. Secondly, we present a fusion algorithm that

propagates direct manipulations into the source functional programs and applies them to the constants

whenever possible; otherwise, the algorithm embeds manipulations into the “proper positions” of programs.

We prove the correctness of the fusion algorithm that the updated program executes to get the manipulated

output. To demonstrate the expressiveness of DM and the effectiveness of our fusion algorithm, we have

implemented FuseDM, a prototype SVG editor that supports GUI-based operations for direct manipulation,

and successfully designed 14 benchmark examples starting from blank code using FuseDM.

CCS Concepts: • Software and its engineering→ Design languages.

Additional Key Words and Phrases: Bidirectional Programming, Direct Manipulation, FuseDM

ACM Reference Format:
Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu. 2024. Fusing Direct Manip-

ulations into Functional Programs. Proc. ACM Program. Lang. 8, POPL, Article 41 (January 2024), 28 pages.

https://doi.org/10.1145/3632883

1 INTRODUCTION
Bidirectional live programming (BLP) not only allows software developers to see continuous changes

in the output instantly as they write the program, but also enables them to directly manipulate

*Corresponding author.

Authors’ addresses: Xing Zhang, zhangstar@stu.pku.edu.cn, Peking University, Beijing, China; Ruifeng Xie, xieruifeng@pku.

edu.cn, Peking University, Beijing, China; Guanchen Guo, guanchenguo@stu.pku.edu.cn, Peking University, Beijing, China;

Xiao He, hexiao@ustb.edu.cn, University of Science and Technology Beijing, Beijing, China; Tao Zan, zan@lyun.edu.cn,

Longyan University, Longyan, Fujian, China; Zhenjiang Hu, huzj@pku.edu.cn, Peking University, Beijing, China.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).

2475-1421/2024/1-ART41

https://doi.org/10.1145/3632883

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

HTTPS://ORCID.ORG/0009-0008-2565-7769
HTTPS://ORCID.ORG/0000-0001-7201-1954
HTTPS://ORCID.ORG/0009-0007-0690-2119
HTTPS://ORCID.ORG/0000-0002-3000-0795
HTTPS://ORCID.ORG/0009-0006-3581-5324
HTTPS://ORCID.ORG/0000-0002-9034-205X
https://doi.org/10.1145/3632883
https://orcid.org/0009-0008-2565-7769
https://orcid.org/0000-0001-7201-1954
https://orcid.org/0009-0007-0690-2119
https://orcid.org/0000-0002-3000-0795
https://orcid.org/0009-0006-3581-5324
https://orcid.org/0000-0002-9034-205X
https://doi.org/10.1145/3632883

41:2 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Fig. 1. An SVG Example

the output and automatically reflect the changes back to the source program, so that the updated

program can produce the manipulated output.

Existing BLP systems generally fall into two categories, i.e., state-based systems and operation-
based systems. State-based systems, such as CapStudio [Fukahori et al. 2014], Sketch-n-Sketch [Chugh
et al. 2016; Mayer et al. 2018], Bidirectional Preview [Zhang and Hu 2022], and BiOOP [Zhang et al.

2023a], only consider the snapshot (i.e., the state) of the manipulated output, limiting the expression

of developers’ intention to modify the source program. On the other hand, operation-based systems,
such as the follow-ups of Sketch-n-Sketch

1
[Hempel and Chugh 2016; Hempel et al. 2019], take

the process of manipulations into account, thus providing developers with better control over

program modifications by applying different direct manipulations. To be concrete, consider the

program in Figure 1a that outputs a singleton group consisting of a blue rectangle. In a state-based

system, the following two manipulations—𝐷𝑀1, which changes the rectangle’s color from blue

to yellow, and 𝐷𝑀2, which deletes the blue rectangle and then adds a yellow rectangle—lead to

the identical output, resulting in the same source program as shown in Figure 1b. In contrast, in

an operation-based system, 𝐷𝑀2 probably transforms the program into the one in Figure 1c. This

implies that the developer can obtain different updated programs through distinct manipulation

operations, even though the manipulated outputs are the same.

Existing operation-based BLP systems, such as Sketch-n-Sketch, keep trace links
2
between

the program output and the source code fragments and require direct manipulation users know

these links. When a manipulation is performed on the output, they locate the code fragments

according to the trace links and apply program transformation to modify the code. Specifically,

Sketch-n-Sketch provides several manipulation operations for editing scalable vector graphics

(SVG) in a visual editor. These operations perform transformations on the expressions (in the source

code) associated with the selected output graphics/values. For example, Grouping graphics together
means putting the expressions that generate the selected graphics into a list in the source code.

1
There are different versions of Sketch-n-Sketch proposed in many papers, including both state-based and operation-based

ones. For simplicity, in the rest of this paper, “Sketch-n-Sketch” refers to the operation-based versions when there is no

conflict in the context.

2
Sketch-n-Sketch[Hempel et al. 2019] mentions “...the Sketch-n-Sketch evaluator performs tracing on every execution step:

the resultant value is tagged with the expression being evaluated as well as pointers to the prior (tagged) values used in the

immediate computation; transitively following these prior tagged values reveals the dependencies of the computation.”

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:3

Fig. 2. Framework of FuseDM

Despite the appeal of the existing operation-based systems, there are two limitations. First,

although they provide a large suite of direct manipulation operations, these operations are hard-

coded and inconvenient to extend. For example, the tool developers may want to define another

Copy operation that inserts a constant graphic identical to the copied one (like Figure 1f), rather

than repeating the copied graphics as the existed Copy operation does. To this end, developers need

to change the system by reimplementing the new Copy operation. Second, the direct manipulations

they support are code-sensitive, in the sense that they require the developer to know the details of

the program. When the developer is manipulating the output, she/he must be aware of the code

fragments to be changed. Otherwise, the developer may obtain an unexpected result. Consider

Figure 1a again. Assume that the developer wants to create a copy of the graphic group in the

output. She/he selects a widget named “group” in the visual editor (but does not check the code it

corresponds to) and invokes the manipulation operation Copy to duplicate the group. Sketch-n-

Sketch finds the expression provenance “Line 3” in Figure 1a corresponding to the selected widget

and copies the expression itself
3
, resulting in Figure 1d. However, the updated program fails to get

the expected output that should consist of two identical graphic groups. Figure 1e is an acceptable

program that meets the developer’s intention.

To address the above limitations, we shall present code-insensitive direct manipulation operations

for output values and automatically fuse them into the source program to get an updated program

where proper expressions are modified. In other words, we hope to propagate direct manipulation

into the program and embed it into the “proper positions”.

There are three main challenges to realizing our goal. First, we need to define a general code-

insensitive representation of common direct manipulations, which should be expressive enough

for developers to describe various modification intentions, but also simple to be fused into general

source programs. Second, we should be able to locate “proper positions” of the source program to

insert the direct manipulation (rather than trivially appending it to the end of the source program).

Third, we should guarantee that the fusion of the direct manipulation into the source program is

correct, i.e., the execution of the fused program will produce the manipulated output.

In this paper, we propose a new operation-based framework for bidirectional live program-

ming with a key technique that can fuse code-insensitive direct manipulations into general-purpose

functional programs. It supports the direct manipulation users, who know nothing about the

3
Sketch-n-Sketch may find that the selected widget is an intermediate computation, not the final output, so only the

expression is copied and not added to the output.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:4 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

source program, to intentionally manipulate the output. Our main technical contributions can be

summarized as follows.

• We design a simple but expressive delta language DM (Section 3) for manipulating output

values, including data structure modification, list folding, constraint creation, etc. It can

express common direct manipulations and allow tool developers to customize more.

• We present a powerful fusion algorithm (Section 4) that fuses direct manipulations into

general-purpose functional programs. It can propagate direct manipulations to constants

whenever possible and otherwise embed them into the “proper position” of source programs.

We prove the correctness of the algorithm in that execution of the updated program yields

the same manipulated output (Section 4.3). Two distinguished features are:

– Compared to existing state-based work, it is not limited to modifying constant literals in

programs, but can modify the program structure as intended by the developer;

– Compared to existing operation-based work, it captures more direct manipulations by the

delta language to avoid hard-coded implementations for each manipulation and supports

modifying the program by code-insensitive direct manipulations for output values.

• We have implemented a prototype SVG editor called FuseDM to demonstrate the expressive-

ness of the delta language DM and the effectiveness of the fusion algorithm. Our tool supports

various code-insensitive direct manipulations for editing SVG, which works similarly to the

ones for graphics in Sketch-n-Sketch but do not require tracing the source program. Based

on those direct manipulations, we have successfully worked out 14 nontrivial benchmark

examples (Section 5).

2 OVERVIEW
To give an overall impression of our approach, we shall present the framework of FuseDM and

demonstrate how a developer completes an SVG task through our tool with a concrete example.

2.1 Framework
The framework of FuseDM is given in Figure 2, including the core bidirectional transformation

[Czarnecki et al. 2009] and the GUI interface.

In the core bidirectional transformation, in one direction, the source programwritten in a general-

purpose functional language F (defined in Section 4.1) executes through a standard evaluator and

gets the internal output representation. In another direction, a direct manipulation written in the

delta language DM (defined in Section 3.1) alters the output to a new one and is fused into the source

program through the fusion algorithm. As a contrast to our approach, the state-based approach

back-propagates the modified output values back to the program (indicated by the gray blocks).

In the GUI interface, the internal output representation is translated to SVG and rendered in

the browser. We realize several common GUI-based operations by using DM, as shown in Table 5.

When a GUI-based operation is invoked, it automatically generates a piece of DM code and applies

the DM code to the internal output representation to get a new output. Then, the new output is

rendered as new graphics.

2.2 Illustrative Example
We use an example to illustrate how developers utilize our prototype tool, FuseDM, to develop

SVG, with a focus on direct manipulations of the SVG output without having to be familiar with

the source program.

Consider the task of drawing a simple butterfly using SVG. The developer may start with an

initial program that generates graphics to be perfected (we also support starting from blank code).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:5

Fig. 3. A Screenshot of FuseDM with An Initial Program

Fig. 4. Relating Operations

Then the developer uses GUI-based operations to manipulate the graphics to the desired one step

by step, while the system fuses direct manipulations into the source program so that the updated

program executes again to get the exact desired butterfly.

Step 1: Starting from an Initial Program. Figure 3 shows a screenshot of our tool, which consists

of an initial program on the left and a canvas on the right. Clicking on the right-facing arrow will

execute the program to get an SVG output on the canvas; clicking on the left-facing arrow will fuse

the direct manipulation on the output into the source program.

In the initial program, Lines 1-4 are variable declarations. Line 6 defines a graphic group (list),

comprised of three ellipses. An ellipse is defined by four parameters: the color, the center coordinate,

the x-axis radius, and the y-axis radius. Line 12 outputs the graphic group. On the canvas, identifiers

for the graphics are depicted by light gray labels, while white circular markers facilitate resizing

operations.

Step 2: Resizing Ellipses. The developer resizes the x-radius of ellipse2 to make it smaller, which

generates a direct manipulation written in DM as follows: It subtracts 10 from the x-radius (the 3rd

argument) of the 2nd graphic of the group.

modify 2 (modify 3 (−Δ10))
After clicking the left-facing arrow, the assignment of the variable rx2 in Line 3 is subtracted by 10

and becomes 20, because our fusion algorithm propagates and applies the direct manipulation to

constants in the source program whenever possible.

It is worthwhile noticing that propagating the direct manipulation to constants is not forever
successful because the fusion process produces results that can be described as inconsistent proposed

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:6 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

modifications of the same variable, which must be reconciled. In this case, we embed the direct

manipulation into a “proper position” of the source program. For example, the developer resizes the

y-radius of ellipse1, i.e., ry1 in Line 7 should be changed. However, since ellipse2 is not manipulated,

ry1 in Line 8 should not be touched. Consequently, we cannot straightforwardly modify the

assignment of ry1 in Line 1; otherwise, ellipse2 will be affected. The fusion finds the conflict that

prevents further propagation. Finally, it decomposes the delta and embeds the sub-delta, e.g., (−Δ5),
into Line 7, replacing ry1 with ry1 − 5.

Step 3: Making Two Wings the Same Size. The developer uses relating operations to make

two wings (ellipse1 and ellipse3) of the butterfly the same size. Relating operations relate certain

properties of graphics and add a new relationship (constraint) for outputs.

Specifically, the developer clicks ellipse3 and selects the x-radius feature as the relating goal,

as shown in Figure 4b. Then “ellipse3_rx” is filled in the left input box of Figure 4a. Similarly,

the developer fills “ellipse1_rx” in the right input box. Clicking the “Relate” button assigns the

x-radius of ellipse1 to the one of ellipse3. Note that the right input box can be edited to fill in

arbitrary arithmetic expressions
4
, such as “ellipse1_rx * 2”. Then the developer sets their y-radii

in the same way. As a result, ellipse1 and ellipse3 become the same size. The direct manipulation

for setting x-radii is encoded as follows:

intro ellipse1_rx by (nth 0 ◦ nth 2 ◦ id) into
modify 2 modify 2 (repl ellipse1_rx).

The direct manipulation assigns the x-radius of ellipse1 to the one of ellipse3, using the constraint
creation (intro cx by select into dv) defined in Section 3.1. Specifically, it introduces a new variable,

ellipse1_rx, assigned by the x-radius of ellipse1. The selector nth 0 ◦ nth 2 ◦ id is to extract the

x-radius of 𝑒𝑙𝑙𝑖𝑝𝑠𝑒1, i.e., the 3rd parameter of the 1st graphic. Finally, the x-radius of ellipse3 is
replaced by ellipse1_rx. The program fused with this direct manipulation is given in Figure 4c,

where rx1 (resp. ry1 − 5) is assigned to the newly-introduced variable ellipse1_rx (resp. ellipse1_ry)
outside the graphic declarations; the x-radii (resp. y-radii) of ellipse1 and ellipse3 are set to the

ellipse1_rx (resp. ellipse1_ry).
This operation shows that FuseDM automatically propagates the constraint creation into the

expressions that produce the selected properties, without trace links, and updates the expressions

according to the intention explicitly expressed in the written direct manipulation. In contrast,

Sketch-n-Sketch realizes relating operations by tracing back the related program expressions and

replacing them with synthesized expressions relying on a constraint solver, which may produce

unpredictable updates.

Step 4: Aligning Body and Wings. The developer wants the centers of the body (ellipse2) and two
wings of the butterfly (ellipse1 and ellipse3) to be aligned on the y-axis. This operation (i.e., “Align

(Y)”) is realized by using recursive operations that manipulate the graphics of a group in a batch.

In FuseDM, the developer selects the outer border of the graphic group and clicks the “Align (Y)”

button, as shown in Figure 5a. The direct manipulation is coded as follows:

intro 𝑦1 by (nth 0 ◦ nth 1 ◦ snd ◦ id) into
dfold (𝜆𝑥 .(0, 𝑥 + 1)) (𝜆𝑥.modify 1 (id, repl 𝑦1)Δ) 0.

The direct manipulation first extracts the y-coordinate of the center of ellipse1 and assigns it to the

variable 𝑦1. Then it employs list folding to iteratively set the y-coordinate of each ellipse’s center to

4
We will offer mouse operations to build relationships instead of manually filling in expressions in the future.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:7

Fig. 5. Recursive Operations and Final Graphics

Deltas dv :: = id | repl aexp | dv1 ◦ dv2 Universal Deltas

| +Δ atom | ∗Δ atom Arithmetic Deltas

| (dv1, dv2)Δ Tuple Deltas

| dv1 ::Δ dv2 | delete 𝑛 | insert 𝑛 atom | modify 𝑛 dv List Deltas

| dfold derive todelta acc List Folding

| intro 𝑥 by select into dv Constraint Creations

Atomic Expressions atom :: = 𝑐 | 𝑥 | (atom1, atom2) | atom1 :: atom2

Arithmetic Expressions aexp :: = atom | aexp
1
+ aexp

2
| aexp

1
∗ aexp

2
| · · ·

Selectors select :: = id | proj ◦ select
Projectors proj :: = head | tail | fst | snd

Fig. 6. Syntax of Delta Language DM

𝑦1. The list folding dfold is defined in Section 3.1, which is similar to the foldl function in Haskell.

In this case, dfold degenerates into the map function. Figure 5b displays the updated program that

has been fused with this direct manipulation.

Step 5: Adding Antennae. The developer draws two lines as the butterfly’s antennae, as shown in

Figure 5c. Take the first line as an example. The corresponding generated direct manipulation is as

follows, which denotes the insertion of a constant graphic into the 1st index:

insert 1 (line 190 (136, 210) (150, 237)) .

By fusing the two direct manipulations, two constant graphics are inserted into the main list, as

shown in Figure 5d.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:8 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

3 DELTA LANGUAGE FOR DIRECT MANIPULATIONS
To achieve our goal of fusing direct manipulations into general source programs, we define a delta

language (DM) for manipulating values, which is simple enough to be fused into programs but

expressive enough to describe common direct manipulations and provide the flexibility to customize

more complex ones. We give DM’s syntax in Section 3.1 and its semantics in Section 3.2.

3.1 Syntax of Delta Language DM
The syntax of DM is defined in Figure 6. The subscript ‘Δ’ is used to distinguish the notations of

DM from those of the language F defined in Section 4. Deltas dv mainly include universal deltas,

arithmetic deltas, tuple deltas, list deltas, and constraint creations. Specifically, universal deltas can

apply to any type of value, including the identity id, compositions dv1 ◦Δ dv2, and replacements

repl aexp. Arithmetic deltas include additions +Δatom and multiplications ∗Δatom.

List deltas include delta constructors dv1 ::Δ dv2, deletions delete 𝑛, insertions insert 𝑛 atom,

modifications modify 𝑛 dv, and the list folding dfold derive todelta acc, where 𝑛 is an integer.

The list folding is similar to foldl in Haskell. Here, derive—a function written in F (defined in

Section 4.1)—takes the current accumulator acc (an atomic expression) as input and derives a new

accumulator acc′. Additionally, it computes the arguments to be applied by the function todelta,
which computes a delta for each list element being recursively processed.

Constraint creations intro 𝑥 by select into dv introduce a new variable 𝑥 , then extract a sub-

value from the output value by the selector select, and then bind the variable 𝑥 to that sub-value.

The variable 𝑥 can then be accessed in dv. Selectors select extract a specific value from a data

structure, including the identity selector id, and composition selectors with projectors consisting

of head, tail, fst, and snd. For simplicity, we use nth as a macro of head and tail to represent

projectors for lists.

Atomic expressions atom include constants 𝑐 (defined in Figure 4.1), variables 𝑥 , and data struc-

tures (e.g., tuples and lists). The arithmetic expressions aexp include atomic expressions atom,

additions aexp
1
+ aexp

2
, multiplications aexp

1
∗ aexp

2
, etc.

To demonstrate that the delta language DM is expressive and extensible, we implement a few

common direct manipulations for editing SVG output in a prototype editor, as summarized in Table

5. We have already given some examples in Section 2. Here are a few more classic examples of

direct manipulation.

Example 3.1 (Copy). The copy operation is used to duplicate a graphic, producing an identical

copy of the original. We assume that the modification intention implied by the copy operation is

to repeat the copied graphic rather than introduce a new, identical one. Consider a canvas with

only one graph, which is then copied. The copy operation is written as follows: It first extracts

the existing graphic using the selector head ◦ id and assigns it to the newly introduced variable 𝑥 .

Then it inserts x into the 1st index behind the existing graphic.

intro 𝑥 by (head ◦ id) into (insert 1 𝑥) □

Example 3.2 (Group). We can define a group operation as putting more than one graphic into a

list, making it possible to support simultaneous movement, resizing, and more recursive operations

on them by utilizing the list folding. For example, grouping the two graphics together can be written

as follows: It first extracts two graphics and assigns them to 𝑔1 and 𝑔2 respectively; then deletes

them from the original list; and finally inserts a list consisting of 𝑔1 and 𝑔2.

intro 𝑔1 by (head ◦ id) into
intro 𝑔2 by (tail ◦ head ◦ id) into
delete 0 ◦ delete 0 ◦ insert 0 [𝑔1, 𝑔2]

□

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:9

[D-Id]

id ⊲ 𝑣 { 𝑣
[D-Repl]

∅ ⊢ aexp ⇒ 𝑣′

repl aexp ⊲ 𝑣 { 𝑣′
[D-Com]

dv1 ⊲ 𝑣 { 𝑣′ dv2 ⊲ 𝑣′ { 𝑣′′

dv2 ◦ dv1 ⊲ 𝑣 { 𝑣′′

[D-Add] +Δatom ⊲ 𝑛 { 𝑛 + atom
[D-Mul] ∗Δatom ⊲ 𝑛 { 𝑛 ∗ atom

[D-Tuple]

dv1 ⊲ 𝑣1 { 𝑣′
1

dv2 ⊲ 𝑣2 { 𝑣′
2

(dv1, dv2)Δ ⊲ (𝑣1, 𝑣2) { (𝑣′
1
, 𝑣′

2
)

[D-Cons]

dv1 ⊲ 𝑣1 { 𝑣′
1

dv2 ⊲ 𝑣2 { 𝑣′
2

dv1 ::Δ dv2 ⊲ 𝑣1 :: 𝑣2 { 𝑣′
1
:: 𝑣′

2

[D-Mod-1]

𝑛 > 0 modify (𝑛 − 1) dv ⊲ 𝑣2 { 𝑣′
2

modify 𝑛 dv ⊲ 𝑣1 :: 𝑣2 { 𝑣1 :: 𝑣
′
2

[D-Mod-2]

dv ⊲ 𝑣1 { 𝑣′
1

modify 0 dv ⊲ 𝑣1 :: 𝑣2 { 𝑣′
1
:: 𝑣2

[D-Fold]

∅ ⊢ derive acc ⇒ (arg, acc′) todelta = 𝜆𝑥.dv dv1 = dv [𝑥 ↦→ arg]
dv1 ⊲ 𝑣1 { 𝑣′

1
dfold derive todelta acc′ ⊲ 𝑣2 { 𝑣′

2

dfold derive todelta acc ⊲ 𝑣1 :: 𝑣2 { 𝑣′
1
:: 𝑣′

2

[D-Constraint]

𝑣1 = 𝑣 |𝑣 select dv [𝑥 ↦→ 𝑣1] ⊲ 𝑣 { 𝑣′

intro 𝑥 by select into dv ⊲ 𝑣 { 𝑣′

Fig. 7. Semantics of Delta Language DM (selected rules)
dv ⊲ 𝑣 { 𝑣 ′

Example 3.3 (Equidistant). The equidistant operation makes the graphics of a group equally

spaced on the x-axis (assume that the interval is 10), which may be written as follows: It first

extracts the x-coordinate of the 1st graphic by the selector and assigns it to 𝑥0; then it uses the list

folding to replace the x-coordinate of the i-th graphic with 𝑥0 plus 𝑖 ∗ 10. More detailed semantics

can be found in the next section.

intro 𝑥0 by (head ◦ nth 1 ◦ fst ◦ id) into
dfold (𝜆𝑖.(𝑖 ∗ 10, 𝑖 + 1)) (𝜆dis.modify 1 (repl (𝑥0 + dis), id)) 0 □

Example 3.4 (Every N). In addition to common direct manipulations, we can also customize more

problem-specific operations, such as Every N. We often have a need for a set of graphs to repeat a

pattern periodically, as in the “Target” example in Figure 17. If we want a set of concentric circles

in red and green, we can use the Every 2 operation written as follows: It uses list folding, where

the initial index is 0; the first function derive returns “green” for even indexes and “red” for odd

ones and increments the index; then the second function todelta modifies each graphic’s color to

the value computed by derive.

dfold (𝜆𝑖.case 𝑖%2 of {0 → (“green”, 𝑖 + 1), 1 → (“red”, 𝑖 + 1)})
(𝜆color .modify 0 (repl color)) 0 □

3.2 Semantics of Delta Language DM
The semantics of DM is defined in Figure 7. We discuss DM’s semantics here because, though rarely

used in the fusion algorithm in Section 4, they define what change means, providing the target for

our correctness proof later. The judgment dv ⊲ 𝑣 { 𝑣 ′ states that “after applying a delta dv to the

value 𝑣 , 𝑣 becomes 𝑣 ′”, where the definition of values 𝑣 is given in Figure 9 including constants,

tuples, and lists. Below, we explain rules for each category of deltas. Notably, we compute variables

by using variable substitution [𝑥 ↦→ 𝑣], which replaces the variable 𝑥 with a value 𝑣 , instead of

using a context. Additionally, the conversion of values to atomic expressions is straightforward

and is therefore omitted.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:10 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Table 1. Detail Explanation of D-Fold with An Example

Step Detail Example

1

Apply derive to the seed atom and get a tuple

(arg, atom′), where atom′
is the next seed.

∅ ⊢ derive 0 ⇒ (1, 1)

2

Suppose todelta is 𝜆𝑥 .dv. Substitute the variable 𝑥 in 𝑑𝑣

by arg and get dv1.
(+Δ𝑥) [𝑥 ↦→ 1] = (+Δ1)

3 Apply dv1 to 𝑣1 and get 𝑣 ′
1
. +Δ1 ⊲ 0 { 1

4 Apply dfold derive todelta atom′
to 𝑣2 and get 𝑣 ′

2
. dfold derive todelta 1 ⊲ [0, 0] { [0, 1]

Consider an operation that adds 1 to odd indexes of the list [0, 0, 0]. Here is a possible solution using list folding, where

the initial acc is 0 and todelta is “\x.+Δx”. derive may be “\i.case i%2 of 0->(1,i+1) | 1->(0,i+1)”.

(𝑣1 :: 𝑣2) |𝑣 head ◦ select = 𝑣1 |𝑣 select [S-Head] (𝑣1 :: 𝑣2) |𝑣 tail ◦ select = 𝑣2 |𝑣 select [S-Tail]

(𝑣1, 𝑣2) |𝑣 fst ◦ select = 𝑣1 |𝑣 select [S-Fst] (𝑣1, 𝑣2) |𝑣 snd ◦ select = 𝑣2 |𝑣 select [S-Snd]

𝑣 |𝑣 id = 𝑣 [S-Id]

Fig. 8. Semantics of Selectors for Values
𝑣 |𝑣 select = 𝑣 ′

3.2.1 Universal Deltas. Universal deltas include three axioms. The rule D-Id states that the identity

id keeps the value 𝑣 unchanged. The rule D-Com states that, when the composition dv2 ◦ dv1
applies to 𝑣 , first 𝑣 is applied by dv1 and becomes 𝑣 ′, and then 𝑣 ′ is applied by dv2 and becomes 𝑣 ′′.

The rule D-Repl ignores the value 𝑣 and directly replaces it with a new value, where “∅ ⊢ aexp ⇒
𝑣 ′” evaluates arithmetic expressions to values defined in Section 4. The semantics of DM ensures

that all variables in the arithmetic expression aexp have been substituted with concrete numerical

constants if the delta is closed (i.e., all variables are bound).

3.2.2 Arithmetic Deltas. Arithmetic deltas can apply to numeric values, including adding and

multiplying a number. The rule D-Add states that, when applying +Δatom to a numerical value 𝑛,

the value increases by atom. The rule D-Mul is similar in that it multiplies the value n by atom.

3.2.3 Tuple and List Deltas. As the names implies, tuple deltas are for tuple values and list deltas

are for list values. The rule D-Tuple states that, when applying the tuple delta (dv1, dv2)Δ to the

tuple value (𝑣1, 𝑣2), 𝑣1 (resp. 𝑣2) is applied by dv1 (resp. dv2) and becomes 𝑣 ′
1
(resp. 𝑣 ′

2
). The rule

D-Cons is similar to D-Tuple.

The application rules of deletion, insertion, and modification all iterate through the list value

and then find the position of the index to modify. We use modification as an example to describe

this process. The rule D-Mod-1 states that when applying modify 𝑛 dv to a list construction 𝑣1 :: 𝑣2
and 𝑛 is larger than zero, 𝑣2 is applied by modify (𝑛 − 1) dv and becomes 𝑣 ′

2
. The rule D-Mod-2

states that when 𝑛 equals zero, 𝑣1 is applied by dv and becomes 𝑣 ′
1
.

To make our delta language DM simple, we use list folding to express common recursive deltas,

instead of introducing generic fix points. As demonstrated by the case study in Section 5, list folding

is useful enough in practice. Overall, list folding applies deltas to each element from left to right.

To avoid introducing general language constructors, such as case expressions and function calls,

into DM, we separate the recursion logic (i.e., derive) and the delta generation (i.e., todelta). As the
input of derive, acc is an atomic expression denoting an accumulator, usually the list index. Let us

use an example to show how the rule D-Fold works.

Example 3.5. Consider an operation that adds 1 to odd indexes of an integer list [0, 0, 0]. Here is
a possible solution using list folding, where the initial acc is 0 and todelta is \x.+Δx. derive may be

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:11

Table 2. Detail Explanation of D-Constraint with An Example

Step Detail Example
1 Extract the subvalue 𝑣1 from 𝑣 by the selector select. (1, 0) |𝑣 (fst ◦ id) = 1

2 Substitute 𝑥 in 𝑑𝑣 with 𝑣1.
(id, repl (2 ∗ 𝑥)) [𝑥 ↦→ 1] =

(id, repl (2 ∗ 1))
3 Apply the substituted delta to 𝑣 and get 𝑣 ′

1
. (id, repl (2 ∗ 1)) ⊲ (1, 0) { (1, 2)

Consider an example “to make the second element of (1, 0) equal to twice its first element” by the constraint creation

“intro 𝑥 by (fst ◦ id) into (id, repl (2 ∗ 𝑥)) .”

\i.case i%2 of 0->(1,i+1) | 1->(0,i+1).

When applying the list folding to the list [0, 0, 0], the rule D-Fold works as Table 1. Finally, the list

changes to [1, 0, 1]. □

3.2.4 Constraint Creations. A constraint creation introduces a new variable called “𝑥” to represent

the functional relationship between sub-parts of a value, which is utilized for alignment, point

joining, format brush, etc. Specifically, we use a selector (explained later) to extract one sub-value

and assign it to 𝑥 , and then replace another sub-value with an arithmetic expression containing 𝑥

by D-Repl. As shown in Table 2, we explain the rule D-Constraint using an example “to make the

second element of (1, 0) equal to twice its first element” by the following constraint creation

intro 𝑥 by (fst ◦ id) into (id, repl (2 ∗ 𝑥)) .
Selectors are defined in Figure 8. The subscript ‘𝑣 ’ of ‘|𝑣 ’ denotes that the semantics of selectors

is for values. (Later we define the semantics of selectors for expressions, using “|𝑒”.) The selector
head ◦ select (resp., tail ◦ select) selects the head element (resp., the remainder list except for the

head element) of a list to perform subsequent select. The selector fst ◦ select (resp., snd ◦ select)
selects the first (resp., second) element of a tuple to perform subsequent select. The identity id
returns the original value itself.

4 FUSING DIRECT MANIPULATION INTO PROGRAMS
The core of our approach is to fuse code-insensitive direct manipulations into general functional

programs, i.e., to propagate deltas to program constants whenever possible; otherwise, to embed

deltas into the “proper positions”. In this section, we first give the syntax of a core general-

purpose functional language F (Section 4.1) used to write source programs. Then, we present

the key fusion algorithm (Section 4.2) that fuses direct manipulations for values written in DM into

source functional programs written in F. Lastly, we demonstrate the correctness of the fusion

algorithm (Section 4.3) by showing that when fused with the direct manipulation, the modified

program executes to get the manipulated output.

4.1 A Core Functional Language for Source Programs
In Figure 9, we define a core functional language F for writing source programs. Expressions

include basic expressions, arithmetic expressions, case expressions, constructors, and fix points

(fix 𝑒). Basic expressions include constants 𝑐 , variables 𝑥 , abstractions 𝜆𝑝.𝑒 , and applications

𝑒1 𝑒2. Constants include numbers 𝑛, booleans 𝑏, strings 𝑠 , and the empty list []. Constructors
include tuples (𝑒1, 𝑒2) and list constructions 𝑒1 :: 𝑒2. Values include constants 𝑐 , tuples (𝑣1, 𝑣2), list
constructions 𝑣1 :: 𝑣2, and function closures (𝐸, 𝜆𝑝.𝑒). Environments 𝐸 are not standard; they are

mappings from variables to pairs composed of values 𝑣 and their corresponding deltas dv that are

to be applied, denoted as 𝑣dv .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:12 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Expressions 𝑒 :: = 𝑐 | 𝑥 | 𝜆𝑝.𝑒 | 𝑒1 𝑒2 | 𝑒1 ⊕ 𝑒2

| case 𝑒 of {𝑝𝑖 → 𝑒𝑖 }𝑛𝑖=1
| (𝑒1, 𝑒2) | 𝑒1 :: 𝑒2 | fix 𝑒

Constants 𝑐 :: = 𝑛 | 𝑏 | 𝑠 | []
Patterns 𝑝 :: = 𝑐 | 𝑥 | (𝑝1, 𝑝2) | 𝑝1 :: 𝑝2

Arithmetic Operators ⊕ :: = (+) | (∗) | (&&) | (>) | (==) | · · ·
Values 𝑣 :: = 𝑐 | (𝑣1, 𝑣2) | 𝑣1 :: 𝑣2 | (𝐸, 𝜆𝑝.𝑒)

Environments 𝐸 :: = ∅ | 𝐸, 𝑥 ↦→ 𝑣dv

(Extended) Deltas dv :: = · · · | (𝐸, 𝜆𝑝.𝑒)

Fig. 9. Syntax of F

Deltas extend the definition in Figure 6 with additional function closures. We supplement the

application rule D-Lam for function closures as follows, which replaces the original environment 𝐸

and function body 𝑒 with 𝐸′
and 𝑒′, respectively. Function changes can be decomposed into two

orthogonal changes: one is the free variable change carried by 𝐸′
and the other is the function body

change reflected in 𝑒′.

(𝐸′, 𝜆𝑝.𝑒′) ⊲ (𝐸, 𝜆𝑝.𝑒) { (𝐸′, 𝜆𝑝.𝑒′)

4.2 Fusion Algorithm
We present a fusion algorithm that fuses direct manipulations written in DM into functional source

programs written in F to get a new program. During fusion, if it can propagate the delta to the

program constants, it applies the delta to update the constants. Otherwise, it embeds the delta, as a

function in F, into a “proper position” of the program.

There are three primary challenges in fusion: (1) When the delta cannot be propagated into

program constants, it needs to be embedded into a “proper position” in the program, rather than

simply being composed with the source program. (2) The program fused with a delta executes

to exactly get the manipulated output that is applied by that delta (Soundness). (3) The program

should remain unchanged when there is no direct manipulation of the output (Stability), defaulted

as the identity id.
The fusion algorithm, addressing the above challenges, is mainly presented in Figures 11, 12,

and 13. The judgment dv ⊲ 𝐸 ⊢ 𝑒 { 𝐸′ ⊢ 𝑒′ states that “fusing the delta dv into the program 𝐸 ⊢ 𝑒
yields a new program 𝐸′ ⊢ 𝑒′”, where we denote programs by expression-environment pairs 𝐸 ⊢ 𝑒 .
We sometimes say “𝑒 (with 𝐸) is applied by dv” in reference to fusion.

Below, we explain how the fusion algorithm works in a concrete example in Section 4.2.1. Then,

we give a detailed explanation of fusion rules in Sections 4.2.2 and 4.2.3. We define the “proper

positions” of the source program to embed deltas in Section 4.2.4. As for soundness and stability,

we discuss them in Section 4.3.

4.2.1 Fusion Example. Figure 10a presents the fusion of a tuple delta (∗Δ2, id)Δ, which doubles

the value of the first element and keeps the second element unchanged, into a program consisting

of let-bindings that executes to get a tuple (1, 1).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:13

Fig. 10. Fusion Example

The fusion of the delta is a depth-first traversal of the program structure, as shown in Figure

10b (where let-bindings are represented as function applications). The fusion rules come in two

varieties. As shown in Figure 10b, propagation rules (prefixed “P-”) are the core, which carries the

delta through the program structure, including three function applications, until it reaches the

tuple (𝑛, 𝑛); application rules (prefixed “A-”) decompose the delta into two and apply each delta to

each sub-expression of the tuple, i.e. applying the specific effects of deltas to expressions.

The delta, unable to be propagated to the constant 1, necessitates embedding into the program,

owing to the fact that the variable 𝑛 in two sub-expressions of the tuple is updated by inconsistent

deltas, i.e., ∗Δ2 and id. As shown in Figure 10b, there are five choices marked in green numbers to

embed the delta. For example, embedding the delta at the fourth position generates the program

beside it, with the embedded delta indicated in red.

The fusion algorithm chooses to embed the delta at the 5th position, i.e., the light yellow nodes

of the variable 𝑛. (The embedding of id is omitted.) This is because we define the “proper position”

to embed the delta as the one where an update conflict occurs; therefore, we discard the other four

choices. More precisely, we prefer to embed deltas into the deepest possible substructures. For

example, the fusion strives to propagate deltas to the functions or parameters being called, rather

than letting them stay at the root of the function call. We define an important merge operator in

the fusion algorithm to embed deltas by reconciling inconsistencies in variable bindings.

The final program is shown in Figure 10a, which executes to get (2, 1) that equals the original
output value (1, 1) being applied by the delta (∗Δ2, id)Δ. Therefore, soundness is satisfied.

4.2.2 Propagation Rules. Propagation rules are the core that carry deltas across the main program

structure. The core idea is to use variable bindings (environments) to propagate deltas of vari-

ables, inspired by value propagation in Sketch-n-Sketch [Mayer et al. 2018] but adapted to delta

propagation. As a reference, we also give the standard evaluation rules (prefixed “E-”)

Variables. The evaluation rule E-Var states that, if the variable 𝑥 is bound to 𝑣dv in the environment

𝐸, the value 𝑣 is applied by the delta dv and becomes 𝑣 ′. Accordingly, the propagation rule P-Var

states that, when applying a delta dv′ to a variable 𝑥 , the environment 𝐸 is like the original except

that 𝑥 is bound to a new delta dv′ ◦ dv that composes dv′ with the original delta dv. This means, in

environments, only deltas are updated while values remain the same. Note that we compose the

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:14 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Evaluation 𝐸 ⊢ 𝑒 ⇒ 𝑣 Fusion dv ⊲ 𝐸 ⊢ 𝑒 { 𝐸′ ⊢ 𝑒′

[E-Var]

𝐸 (𝑥) = 𝑣dv dv ⊲ 𝑣 { 𝑣′

𝐸 ⊢ 𝑥 ⇒ 𝑣′
[P-Var]

𝐸 (𝑥) = 𝑣dv

dv1 ⊲ 𝐸 ⊢ 𝑥 { 𝐸 [𝑥 ↦→ 𝑣dv1◦dv] ⊢ 𝑥

[E-Lam]

𝐸 ⊢ 𝜆𝑝.𝑒 ⇒ (𝐸, 𝜆𝑝.𝑒)
[P-Lam]

(𝐸′, 𝜆𝑝.𝑒′) ⊲ 𝐸 ⊢ 𝜆𝑝.𝑒 { 𝐸′ ⊢ 𝜆𝑝.𝑒′

[E-App]

𝐸 ⊢ 𝑒1 ⇒ (𝐸𝑓 , 𝜆𝑥 .𝑒𝑓) 𝐸 ⊢ 𝑒2 ⇒ 𝑣2 𝐸𝑓 , 𝑥 ↦→ 𝑣id
2

⊢ 𝑒𝑓 ⇒ 𝑣

𝐸 ⊢ 𝑒1 𝑒2 ⇒ 𝑣

[P-App]

𝐸 ⊢ 𝑒1 ⇒ (𝐸𝑓 , 𝜆𝑥 .𝑒𝑓) 𝐸 ⊢ 𝑒2 ⇒ 𝑣2 dv ⊲ 𝐸𝑓 , 𝑥 ↦→ 𝑣id
2

⊢ 𝑒𝑓 { 𝐸′
𝑓
, 𝑥 ↦→ 𝑣

dv2◦id
2

⊢ 𝑒′
𝑓

(𝐸′
𝑓
, 𝜆𝑥 .𝑒′

𝑓
) ⊲ 𝐸 ⊢ 𝑒1 { 𝐸1 ⊢ 𝑒′

1
dv2 ⊲ 𝐸 ⊢ 𝑒2 { 𝐸2 ⊢ 𝑒′

2
(𝐸′, 𝑒′′

1
, 𝑒′′

2
) = 𝐸1

𝑒′
1⊗𝑒′

2𝐸2

dv ⊲ 𝐸 ⊢ 𝑒1 𝑒2 { 𝐸′ ⊢ 𝑒′′
1
𝑒′′
2

[E-Case]

𝐸 ⊢ 𝑒0 ⇒ 𝑣0 𝐸𝑚 = match 𝑣0 𝑝 𝑗 𝐸 ∪ 𝐸𝑚 ⊢ 𝑒 𝑗 ⇒ 𝑣𝑗

𝐸 ⊢ case 𝑒0 of {𝑝𝑖 → 𝑒𝑖 }𝑛𝑖=1 ⇒ 𝑣𝑗

[P-Case]

𝐸 ⊢ 𝑒0 ⇒ 𝑣0 𝐸𝑚 = match 𝑣0 𝑝 𝑗 dv ⊲ 𝐸 ∪ 𝐸𝑚 ⊢ 𝑒 𝑗 { 𝐸 𝑗 ∪ 𝐸′
𝑚 ⊢ 𝑒′

𝑗

subst 𝐸′
𝑚 𝑝 𝑗 ⊲ 𝐸 ⊢ 𝑒0 { 𝐸0 ⊢ 𝑒′

0
(𝐸′, 𝑒′′

0
, 𝑒′′

𝑗
) = 𝐸0

𝑒′
0⊗𝑒 𝑗

′
𝐸 𝑗

dv ⊲ 𝐸 ⊢ case 𝑒0 of {𝑝𝑖 → 𝑒𝑖 }𝑛𝑖=1 { 𝐸′ ⊢ case 𝑒′′
0
of {𝑝𝑖 → 𝑒𝑖 }𝑛𝑖=1∧𝑖≠𝑗 ∪ {𝑝 𝑗 → 𝑒′′

𝑗
}

Fig. 11. Propagation Rules with Standard Evaluation Rules

new delta with the old one rather than directly replacing it, because we allow the propagation of

composition deltas in A-Com (explained in Section 4.2.3).

Lambda Abstractions. The rule P-Lam states that, when applying the closure (𝐸′, 𝜆𝑝.𝑒′), the program
𝐸 ⊢ 𝜆𝑝.𝑒 becomes 𝐸′ ⊢ 𝜆𝑝.𝑒′, which can be decomposed into two updates: replacing the updated

function body and propagating the updated bindings of free variables to the subsequent fusion.

Function Applications. The rule E-App is standard except that the bound variable 𝑥 is equipped

with a default delta id. For simplicity, we assume only variable patterns in functions rather than

arbitrary ones, as in our implementation. The intuitive idea is explained by the example “fusing

(+Δ1, +Δ2, +Δ3)Δ into the program (∅, 𝑎 ↦→ 0
id) ⊢ (𝜆𝑥.(1, 𝑥, 𝑎)) 𝑎” in Table 3.

The operator 𝐸1
𝑒′
1⊗𝑒′

2𝐸2 in Step 5 first merges variable bindings obtained from fusion of 𝑒1 and 𝑒2,

and then embeds inconsistent deltas into 𝑒′
1
(resp. 𝑒′

2
) to get 𝑒′′

1
(resp. 𝑒′′

2
), formally defined in Section

4.2.4. In this example, merging bindings of the variable 𝑎 in 𝐸1 and 𝐸2 returns two parts: one is the

consistent suffix id to be continually propagated in the environment; the other is the inconsistent

prefix deltas +Δ3 and +Δ2 to be embedded into 𝑒1 and 𝑒2, respectively. Finally, 𝑎 in 𝑒1 becomes 𝑎 + 3

while 𝑎 in 𝑒2 becomes 𝑎 + 2, which is exactly what we mean by the “proper position” to embed

deltas. To be more accurate, we define the “proper positions” by free occurrences of variables that

are updated inconsistently, which prefers the deeper sub-structure of the program, discussed in

Section 4.2.4. The final program is as follows, which evaluates to the manipulated output (2, 2, 3).
(∅, 𝑎 ↦→ 0

id) ⊢ (𝜆𝑥 .(2, 𝑥, 𝑎 + 3)) (𝑎 + 2).
Case Expressions. The fusion algorithm keeps the same execution path as the standard evaluation.

Overall, the rule P-Case first applies the delta dv to the selected branch 𝑒 𝑗 , collects the delta for the

scrutinee 𝑒0, and then fuses it into 𝑒0. The fusion algorithm guarantees that the modified program

executes again with the same path, as proved in the Appendix
5
.

5
The Appendix is available at https://xingzhang-pku.github.io/pub/POPL24-Appendix.pdf.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

https://xingzhang-pku.github.io/pub/POPL24-Appendix.pdf

Fusing Direct Manipulations into Functional Programs 41:15

Table 3. Detail Explanation of P-App with An Example

Detail Example

1

Evaluate the values of the function

𝑒1 and argument 𝑒2.

By E-Lam, (∅, 𝑎 ↦→ 0
id) ⊢ (𝜆𝑥 .(1, 𝑥, 𝑎)) ⇒

((∅, 𝑎 ↦→ 0
id), 𝜆𝑥 .(1, 𝑥, 𝑎))

By E-Var, (∅, 𝑎 ↦→ 0
id) ⊢ 𝑎 ⇒ 0

2

Fuse the delta dv into the function

body 𝑒𝑓 and get 𝑒′
𝑓
and 𝐸′

𝑓
.

(+Δ1, +Δ2, +Δ3)Δ ⊲ (∅, 𝑎 ↦→ 0
id, 𝑥 ↦→ 0

id) ⊢ (1, 𝑥, 𝑎)
{ (∅, 𝑎 ↦→ 0

+Δ3◦id, 𝑥 ↦→ 0
+Δ2◦id) ⊢ (2, 𝑥, 𝑎),

where the constant 1 is applied by +Δ1 and becomes 2 using

A-Add (explained in Section 4.2.3); the bindings of 𝑥 of 𝑎

are updated using P-Var.

3

Fuse the modified function closure

(𝐸′
𝑓
, 𝜆𝑥 .𝑒′) into the function 𝑒1 and

get 𝑒′
1
with 𝐸1.

By P-Lam,

((∅, 𝑎 ↦→ 0
+Δ3◦id), 𝜆𝑥 .(2, 𝑥, 𝑎)) ⊲ (∅, 𝑎 ↦→ 0

id) ⊢ 𝜆𝑥.(1, 𝑥, 𝑎)
{ (∅, 𝑎 ↦→ 0

+Δ3◦id) ⊢ 𝜆𝑥 .(2, 𝑥, 𝑎)

4

Fuse the delta dv2 into the argu-

ment 𝑒2 and get 𝑒′
2
with 𝐸2. (If 𝑥 is

not updated, then dv2 is id, because
id ◦ id = id.)

By P-Var,

+Δ2 ⊲ (∅, 𝑎 ↦→ 0
id) ⊢ 𝑎 { (∅, 𝑎 ↦→ 0

+Δ2◦id) ⊢ 𝑎

5

Merge environments and solve con-

flicts. Refer to Section 4.2.4.

((∅, 𝑎 ↦→ 0
id), 𝜆𝑥 .(2, 𝑥, 𝑎 + 3), 𝑎 + 2) =

(∅, 𝑎 ↦→ 0
+Δ3◦id)𝜆𝑥.(2,𝑥,𝑎)⊗𝑎 (∅, 𝑎 ↦→ 0

+Δ2◦id)
Consider the example “fusing (+Δ1, +Δ2, +Δ3)Δ into the program (∅, 𝑎 ↦→ 0

id) ⊢ (𝜆𝑥.(1, 𝑥, 𝑎)) 𝑎”.

[P-Add]

+Δ𝑛 ⊲ 𝐸 ⊢ 𝑒1 { 𝐸1 ⊢ 𝑒′
1

(𝐸′, 𝑒′′
1
, 𝑒′

2
) = 𝐸1

𝑒′
1⊗𝑒2𝐸

+Δ𝑛 ⊲ 𝐸 ⊢ 𝑒1 + 𝑒2 { 𝐸′ ⊢ 𝑒′′
1
+ 𝑒′

2

[P-Mul]

𝐸 ⊢ 𝑒2 ⇒ 𝑛2

+Δ (𝑛/𝑛2) ⊲ 𝐸 ⊢ 𝑒1 { 𝐸1 ⊢ 𝑒′
1

(𝐸′, 𝑒′′
1
, 𝑒′

2
) = 𝐸1

𝑒′
1⊗𝑒2𝐸

+Δ𝑛 ⊲ 𝐸 ⊢ 𝑒1 ∗ 𝑒2 { 𝐸′ ⊢ 𝑒′′
1
∗ 𝑒′

2

Fig. 12. Propagation Rules for Arithmetic Expressions (selected rules)

Example 4.1. Consider the fusion of a case expression as follows. The program executes to 0 and

then is applied by a delta +Δ1. The variable 𝑎 in the false branch is applied by +Δ1 by P-Var. Then,

the scrutinee 𝑎 > 0 is applied by the identity, which stays unchanged. Finally, the merge operator

𝐸0
𝑒′
0⊗𝑒 𝑗

′
𝐸 𝑗 embeds +Δ1 into 𝑎 in the false branch to get 𝑎 + 1. See more details about the merge

operator and embedding deltas in Section 4.2.4. The final program executes to 1.

+Δ 1 ⊲ (∅, 𝑎 ↦→ 0
id) ⊢ case 𝑎 > 0 of {true → 2, false → 𝑎}

{ (∅, 𝑎 ↦→ 0
id) ⊢ case 𝑎 > 0 of {true → 2, false → 𝑎 + 1}

□

Arithmetic Expressions.How to apply deltas to arithmetic expressions varies in different deployments.

In Figure 12, we give potential heuristic rules for additions (P-Add) and multiplications (P-Mul),

both applying deltas to left operands. Other strategies include modifying the right operands or

applying the same half deltas to both operands, which is not our focus.

4.2.3 Application Rules. Application rules (prefixed “A-”) defined in Figure 13 decompose deltas

and apply sub-deltas to sub-expressions, which is similar to the semantics of applying deltas to

values defined in Figure 7. Below, we mainly focus on what is important to note when applying

deltas to expressions.

Before propagation, if the delta is Id, then the rule A-Id directly returns the original program.

This is more efficient than state-based systems that compare whether the new output is the same as

the original one to decide whether to propagate or not. Similarly, the rule A-Repl directly replaces

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:16 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

[A-Id]

id ⊲ 𝐸 ⊢ 𝑒 { 𝐸 ⊢ 𝑒
[A-Add]

𝑛 = 𝑛1 + 𝑛2
+Δ𝑛1 ⊲ 𝐸 ⊢ 𝑛2 { 𝐸 ⊢ 𝑛

[A-Mul]

𝑛 = 𝑛1 ∗ 𝑛2
∗Δ𝑛1 ⊲ 𝐸 ⊢ 𝑛2 { 𝐸 ⊢ 𝑛

[A-Repl]

repl aexp ⊲ 𝐸 ⊢ 𝑒 { 𝐸 ⊢ aexp
[A-Com]

dv1 ⊲ 𝐸 ⊢ 𝑒 { 𝐸1 ⊢ 𝑒1 dv2 ⊲ 𝐸1 ⊢ 𝑒1 { 𝐸2 ⊢ 𝑒2
dv2 ◦ dv1 ⊲ 𝐸 ⊢ 𝑒 { 𝐸2 ⊢ 𝑒2

[A-Cons]

dv1 ⊲ 𝐸 ⊢ 𝑒1 { 𝐸1 ⊢ 𝑒′
1

dv2 ⊲ 𝐸 ⊢ 𝑒2 { 𝐸2 ⊢ 𝑒′
2

(𝐸′, 𝑒′′
1
, 𝑒′′

2
) = 𝐸1

𝑒′
1⊗𝑒′

2𝐸2

dv1 :: dv2 ⊲ 𝐸 ⊢ 𝑒1 :: 𝑒2 { 𝐸′ ⊢ 𝑒′′
1
:: 𝑒′′

2

[A-Constraint]

𝑒 |𝑒 select𝑥 = 𝑒2;𝑒𝑓 𝐸 ⊢ 𝑒2 ⇒ 𝑣2 dv ⊲ 𝐸, 𝑥 ↦→ 𝑣id
2

⊢ 𝑒𝑓 { 𝐸1, 𝑥 ↦→ 𝑣
dv2◦id
2

⊢ 𝑒′
𝑓

dv2 ⊲ 𝐸 ⊢ 𝑒2 { 𝐸2 ⊢ 𝑒′
2

(𝐸′, 𝑒′′
𝑓
, 𝑒′′

2
) = 𝐸1

𝑒′
𝑓 ⊗𝑒′

2𝐸2

intro 𝑥 by select into dv ⊲ 𝐸 ⊢ 𝑒 { 𝐸′ ⊢ (𝜆𝑥.𝑒′′
𝑓
) 𝑒′′

2

Fig. 13. Application Rules (selected rules)

Table 4. Detail Explanation of A-Constraint with An Example

Step Detail Example

1

Extract the sub-expression 𝑒2 from 𝑒 by

the selector select and replace it by 𝑥 .
(1, 0) |𝑒 (fst ◦ id)𝑥 = 1; (𝑥, 0)

2 Evaluate the sub-expression 𝑒2. ∅ ⊢ 1 ⇒ 1

3

Apply the delta dv to the replaced ex-

pression 𝑒𝑓 with a new environment that

binds 𝑥 to the pair of the value 𝑣 and the

identity.

(id, repl (2 ∗ 𝑥)) ⊲ ∅, 𝑥 ↦→ 1
id ⊢ (𝑥, 0) {

∅, 𝑥 ↦→ 1
id ⊢ (𝑥, 2 ∗ 𝑥)

4

Apply the delta dv2 to the extracted sub-

expression 𝑒2.
id ⊲ ∅ ⊢ 1 { ∅ ⊢ 1

5

Merge environments and solve conflicts.

Refer to Section 4.2.4.
(∅, 𝜆𝑥 .(𝑥, 2 ∗ 𝑥)), 1) = ∅𝜆𝑥.(𝑥,2∗𝑥)⊗1∅

Consider applying the delta intro 𝑥 by (fst ◦ id) into (id, repl (2 ∗ 𝑥)) to the source program (1,0). The final
program becomes (𝜆𝑥.(𝑥, 2 ∗ 𝑥)) 1 that outputs (1, 2) .

the original expression with the new one without regard for the original. Except for A-Id and

A-Repl, the remaining application rules work only after propagating the delta into the deepest

sub-structure of the program. This is demonstrated by rules A-Add and A-Mul, which do not take

action until they have propagated to constants.

For tuple deltas and list deltas, the only difference between applying them to values versus

expressions lies in the additional conflict reconciliation and inconsistent deltas embedding into

sub-expressions required for the latter, as shown in the rule A-Cons.

For composition deltas, the rule A-Com states that, when applying dv2 ◦ dv1 to a program 𝐸 ⊢ 𝑒 ,
it is first applied by dv1 and becomes 𝐸1 ⊢ 𝑒1, which is later applied by dv2 and becomes 𝐸2 ⊢ 𝑒2.
This is feasible because we update the variable binding by composing the later-applied delta to the

first-applied delta in the rule P-Var.

Constraint creation introduces newly-formed relationships into the program by incorporating

new variables. It utilizes a fresh expression, which contains the newly added variables, to articulate

the functional relationship that supplants the original sub-expression. This process requires a

collaborative interaction with the rule A-Repl. We explain the detailed process in Table 4 with the

following example:

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:17

[S-Head]

𝑒1 |𝑒 select𝑥 = 𝑒 ;𝑒𝑓

𝑒1 :: 𝑒2 |𝑒 (head ◦ select)𝑥 = 𝑒 ;𝑒𝑓 :: 𝑒2

[S-Tail]

𝑒2 |𝑒 select𝑥 = 𝑒 ;𝑒𝑓

𝑒1 :: 𝑒2 (tail ◦ select)𝑥 = 𝑒 ;𝑒1 :: 𝑒𝑓

[S-Fst]

𝑒1 |𝑒 select𝑥 = 𝑒 ;𝑒𝑓

(𝑒1, 𝑒2) |𝑒 (fst ◦ select)𝑥 = 𝑒 ; (𝑒𝑓 , 𝑒2)
[S-Snd]

𝑒2 |𝑒 select𝑥 = 𝑒 ;𝑒𝑓

(𝑒1, 𝑒2) |𝑒 (snd ◦ select)𝑥 = 𝑒 ; (𝑒1, 𝑒𝑓)
[S-Id]

𝑒 |𝑒 id𝑥 = 𝑒 ;𝑥

Fig. 14. Semantics of Selectors for Expressions
𝑒 |𝑒 select𝑥 = 𝑒1; 𝑒𝑓

Example 4.2. Consider applying the delta intro 𝑥 by (fst ◦ id) into (id, repl (2 ∗ 𝑥)) to the

source program (1,0). The final program becomes (𝜆𝑥 .(𝑥, 2 ∗ 𝑥)) 1 that outputs (1, 2).

Figure 14 shows the semantics of selectors for expressions, which are distinguished from selectors

for values by the subscript ‘𝑒’ of “|𝑒”. Note that the newly introduced variable’s name is marked

as a subscript of selectors. For the output 𝑒1; 𝑒𝑓 , 𝑒1 is the selected expression to be assigned to the

introduced variable; 𝑒𝑓 is the result of replacing the selected expression 𝑒1 in 𝑒 with the introduced

variable. As shown in the last three steps in Table 4, we treat the newly introduced variable the

same as the originally existing variables in P-App. Deltas generated by direct manipulations must

ensure that variables within expressions to replace original ones in replacements are appropriately

bound within constraints, so that the rule A-Repl directly replaces the original expression with a

new expression containing newly introduced variables. In Step 5, the merge operator merges two

empty environments that have absolutely no conflict, so there is no need to embed deltas.

4.2.4 “Proper Positions” to EmbedDeltas. During the fusion of deltas into source programs, wemean

the “proper positions” to embed deltas as ones where a variable appears in both sub-expressions

and is applied by inconsistent deltas. To satisfy the overall correctness of fusion, the above-defined

“proper position” is the possible deepest one of the program in the depth-first traversal path given

by our algorithm. By “deepest”, we mean that we propagate delta to the deepest substructures of

the program whenever possible, e.g., for function calls to functions and arguments and for data

structures to their substructures, as shown in the example of Figure 10, rather than stopping at the

roots of expression constructors.

We define an important merge operator 𝐸1
𝑒1⊗𝑒2𝐸2 that appears in all rules that need to handle

multiple sub-expressions, to check the conditions for embedding deltas into the “proper positions”.

Themerge operator 𝐸1
𝑒1⊗𝑒2𝐸2 is first proposed in Sketch-n-Sketch [Mayer et al. 2018], called the two-

way merge, which compares two variable bindings and fails as soon as it encounters inconsistency.

In order to always successfully merge and give users a result, they propose a three-way merge
𝐸1⊗𝐸𝐸2, which compares the two bindings with the original one and heuristically prefers the value

that differs from the original. However, the three-way merge cannot guarantee correctness because

one of the output updates is dropped, i.e., the modified programmay not always get the manipulated

output. The merge operator is optimized in our approach, which embeds inconsistent deltas into

the program when there is an inconsistency in variable bindings. We call it the optimized merge
operator. To compare the optimized merge operator with the two-way merge and the three-way

merge, recall the following example given in Table 3.

Example 4.3. The variable 𝑎 in sub-expression 𝑒1 (i.e., 𝜆𝑥.(1, 𝑥, 𝑎)) and 𝑒2 (i.e., 𝑎) is applied by

different deltas (i.e., +Δ3 ◦ id and +Δ2 ◦ id). The two-way merge fails because of the inconsistency.

The three-way merge may propagate either delta bound to 𝑎, which causes the other delta to be

overwritten (i.e., lost). For example, if it chooses +Δ3 ◦ id, the final program becomes the following

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:18 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

one, which evaluates to an undesired output (2, 3, 3).

(∅, 𝑎 ↦→ 0
+Δ3◦id) ⊢ (𝜆𝑥.(1, 𝑥, 𝑎)) 𝑎

In contrast, the optimized merge operator embeds the inconsistent deltas into sub-expressions as

Step 5 in Table 3. □

Intuitively, the optimizedmerge operator first compares two structurally equivalent environments

using the comparing operator 𝑒1×𝑒2
and then embeds conflicting bindings into sub-expressions using

the embedding operator ⊙. We give the formal definitions of the optimized merge operator below.

Definition 4.4 (Optimized Merge Operator). The optimized merge operator 𝐸1
𝑒1⊗𝑒2𝐸2 reconciles

conflicts of variable bindings as follows. (𝐸𝑀 , 𝑒′
1
, 𝑒′

2
) = 𝐸1

𝑒1⊗𝑒2𝐸2 holds if

(𝐸𝑀 , 𝐸𝐼
1
, 𝐸𝐼

2
) = 𝐸1

𝑒1×𝑒2𝐸2, 𝑒′
1
= 𝐸𝐼

1
⊙ 𝑒1, and 𝑒′

2
= 𝐸𝐼

2
⊙ 𝑒2 .

Definition 4.5 (Comparing Operator). The comparing operator
𝑒1×𝑒2

compares two structurally

equivalent environments 𝐸1 and 𝐸2 and returns the successfully-merged part 𝐸𝑀 and two inconsis-

tent parts (𝐸𝐼
1
and 𝐸𝐼

2
).

(𝐸1, 𝑥 ↦→ 𝑣dv1) 𝑒1×𝑒2 (𝐸2, 𝑥 ↦→ 𝑣dv2)

=

((𝐸𝑀 , 𝑥 ↦→ 𝑣dv1), 𝐸𝐼
1
, 𝐸𝐼

2
) if dv1 = dv2

((𝐸𝑀 , 𝑥 ↦→ 𝑣dv1), 𝐸𝐼
1
, 𝐸𝐼

2
) if 𝑥 ∉ fv(𝑒2)

((𝐸𝑀 , 𝑥 ↦→ 𝑣dv2), 𝐸𝐼
1
, 𝐸𝐼

2
) if 𝑥 ∉ fv(𝑒1)

((𝐸𝑀 , 𝑥 ↦→ 𝑣dv
′), (𝐸𝐼

1
, 𝑥 ↦→ 𝑣dv

′
1), (𝐸𝐼

2
, 𝑥 ↦→ 𝑣dv

′
2)) otherwise

where (dv′, dv′
1
, dv′

2
) = dv1 ∧suffix dv2

where (𝐸𝑀 , 𝐸𝐼
1
, 𝐸𝐼

2
) = 𝐸1

𝑒1×𝑒2𝐸2

If both environments bind the same delta to 𝑥 , the first equation adds the delta to the successfully-

merged environment 𝐸𝑀 . Otherwise, if 𝑥 does not appear free in 𝑒2, the second equation adds dv1
in 𝐸1 to 𝐸

𝑀
, because updates to 𝑥 do not affect 𝑒2. (The third equation is similar.) The problematic

case is when 𝑥 appears free in both 𝑒1 and 𝑒2 but the deltas being applied are inconsistent. In the

forth equation, because deltas are in the form of a composition, the longest common suffix dv′ of
dv1 and dv2 will be added to 𝐸𝑀 and continue to propagate, while the inconsistent prefixes dv′

1

and dv′
2
are recorded by two complementary mappings 𝐸𝐼

1
and 𝐸𝐼

2
to be embedded into 𝑒1 and 𝑒2,

respectively. The fact that the composition delta dv1 ◦ dv2 can be split into the prefix and suffix

by the “∧suffix” operator and be fused separately is due to their satisfying the associative law by

A-Com.

Definition 4.6 (Embedding Operator). The “𝐸𝐼 ⊙ 𝑒” embedding operator embeds deltas bound in

the mapping 𝐸𝐼 around free variables in 𝑒 , denoted by

(𝐸𝐼 , 𝑥 ↦→ 𝑣dv) ⊙ 𝑒 = 𝐸𝐼 ⊙ 𝑒 [𝑥 ↦→ exp(dv) 𝑥],

where the “[𝑥 ↦→ exp(dv) 𝑥]” operator replaces the free occurrences of the variable 𝑥 in 𝑒 with

function applications exp(dv) 𝑥 , which apply the function transformed from dv by the helper

transformation exp to the variable 𝑥 . The transformation exp of deltas to expressions should satisfy
the following property.

If 𝐸 ⊢ 𝑥 ⇒ 𝑣 and dv ⊲ 𝑣 → 𝑣 ′, then 𝐸 ⊢ exp(dv) 𝑥 ⇒ 𝑣 ′ .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:19

(1) exp(+Δ𝑛) = 𝜆𝑥.𝑥 + 𝑛

(2) exp((𝐸, 𝜆𝑝.𝑒)) = 𝜆𝑓 .𝜆𝑝.𝐸 ⊙ 𝑒

(3) exp(dv1 ◦ dv2) = 𝜆𝑥.exp(dv1) (exp(dv2) 𝑥)

(4) exp(dv1 :: dv2) = 𝜆𝑥 :: 𝑥𝑠.(exp(dv1) 𝑥) :: (exp(dv2) 𝑥𝑠)

(5) exp(dfold derive (𝜆𝑎.dv) acc) =
𝜆ls.let 𝑓 = 𝜆𝑥.𝜆(res, acc).

let (arg, acc′) = derive acc in
let 𝑓1 = exp(dv [𝑎 ↦→ arg]) in

(concat res [𝑓1 𝑥], acc′)
in foldl 𝑓 ([], 𝑎𝑐𝑐) ls

(6) exp(intro 𝑥 by select into dv) = 𝜆𝑦.(𝜆𝑥 .exp(dv) 𝑦) (select 𝑦)

Fig. 15. Transformations of Deltas to Expression Functions (selected rules)
exp(dv) = ef

Fig. 16. Embedding Deltas into Recursion Funcion Calls

Transformations of Deltas to Expression Functions.We present a possible transformation of deltas

to expression functions defined in Figure 15, which may vary in different deployments. It would

be better to refactor the newly embedded functions to make the modified program more readable,

but this is not our focus. We omit rules for the identity and replacements, where the identity id is

omitted to keep original expressions unchanged and replacements repl directly replace original

expressions with new ones. Below, we explain other details.

The first four lines of Figure 15 are straightforward. Arithmetic deltas combine with original

expressions as arithmetic expressions, as shown in Step 5 of Table 3. Functions transformed from

function closures replace original expressions with new functions, which are embedded with

inconsistent deltas from 𝐸 by the embedding operator (⊙). Composition deltas first apply the

functions transformed from dv2 to the original expression and then apply the function transformed

from dv1 to the previous function application. Constructor deltas transform each sub-delta into

functions and apply them to sub-expressions, respectively.

We can also transform deltas into library functions in F. List folding is transformed through the

library function foldl, defined like the one in Haskell. Other deltas, such as insert, delete, and
modify, are transformed directly into corresponding library functions.

For constraint creations, we first transform selectors select into functions that decompose and

extract sub-parts of original expressions. Then, we bind the sub-expression to the newly-introduced

variable 𝑥 when applying the function transformed from dv to the original expression.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:20 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Fix Points. Fix points require special treatment to be embedded with deltas, as it will expand

all recursive calls if we directly replace fix points with new embedded functions. Therefore, we

backtrack and apply the function transformed from the delta to the entry of the recursive function

call. Consider the following example presented in Figure 16.

Example 4.7. The insertion delta insert 3 0 is fused into a recursive function call, where the

recursive function desc outputs a list of 𝑛 + 1 integers from 𝑛 to 0. As the delta is propagated to the

base case of desc, the expression [0] is applied by the insertion delta and becomes [0,0], resulting
in the conflicting definition of desc. Therefore, we backtrack to the entry of the recursive function

call in Line 5 of the source program and embed the delta outside the function call, as marked in red

in the modified program. □

Remark.When saying that the proper position is the deepest one to embed deltas, we mean the

deepest substructure where delta propagation stops, specifically in the fusion path we have given

above, not the optimal solution under all possible paths. Actually, the “proper position” is agnostic

to the heuristic rules applied in the fusion algorithm, such as updates for arithmetic expressions

and update biases for sub-expressions, which may differ across various deployments. For instance,

our fusion algorithm equalizes all sub-expressions, while others might assign greater priority to

certain sub-expressions, using their updated variable bindings to merge others. Therefore, some

heuristic choices may embed deltas earlier, while others may continue to propagate, as shown in

the following example.

Example 4.8. Consider the expression (𝑎, 𝑎 > 0) with the environment (∅, 𝑎 ↦→ 0
id), which is

applied by the delta (+Δ (−1), id)Δ. If id always keeps the expression unchanged, then since the

variable 𝑎 is applied by inconsistent deltas +Δ (−1) ◦ id and id, the delta +Δ (−1) is embedded into

the first sub-expression. The final program is (𝑎 − 1, 𝑎 > 0) with the unchanged environment.

Alternatively, another strategy may first try applying the delta +Δ (−1) of the first sub-expression
to the second one and check if the update can succeed. Specifically, when 𝑎 is decremented by 1

and becomes −1, the value of 𝑎 > 0 is still false (the same as the original value). Therefore, the

delta +Δ (−1) ◦id is bound to 𝑎 in the environment and continues to propagate, without embedding.

Note that this alternative strategy does not propagate deltas farther in any instance. □

4.3 Correctness
In this section, we discuss the correctness of our approach, i.e., the modified program generated

by fusing the direct manipulation into the source program executes to produce the exact output

modified by that direct manipulation.

Before defining correctness, let us recall the framework of our system presented in Figure 2.

Our system contains a core bidirectional transformation [Czarnecki et al. 2009], consisting of the

standard evaluation (get function) and the fusion (putback function), which maintains consistency

between source programs and their outputs. The foundational work on bidirectional transformation

requires that the get and putback functions satisfy the “round-tripping” properties [Foster et al. 2007].
We adopt the “round-tripping” properties to formalize the stability and soundness (correctness) of

our system mentioned in Section 4.2.

The “round-tripping” properties are defined as follows. The GETPUT law (stability) states that if

we get an output from a program and perform no direct manipulation, the program must remain

unchanged. This is straightforward because we default the direct manipulation to be the identity

id, which keeps the same source program. The PUTGET law (soundness) is more important. It states

that, when a delta is fused into a program, the output of executing the modified program is equal

to the output generated by applying that delta to the original output.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:21

Table 5. Code-insensitive Direct Manipulations in FuseDM

Basic Ops #Ex Relating Ops #Ex Recursive Ops #Ex Mixed Ops #Ex
Draw Graphic 14 Copy 10 ★ Every n 1 Equidistant 4

Drag Graphic 14 Group 8 ★Drag Group 2 ★ Equiangular 1

Resize Graphic 14 Relate 14 ★Resize Group 1 ★ Equiradiidiff 1

Set Color 14 ★ Align Centers 1

★Rotate 1 Align X/Y-axis 2

Delete 0

The #Ex column indicates the number of examples in Figure 17 in which the operation is used.

Those marked with★ are extended direct manipulations that are not supported by Sketch-n-Sketch.

Theorem 4.9 (GETPUT). If 𝐸 ⊢ 𝑒 ⇒ 𝑣 , then id ⊲ 𝐸 ⊢ 𝑒 → 𝐸 ⊢ 𝑒 .

Theorem 4.10 (PUTGET). If 𝐸 ⊢ 𝑒 ⇒ 𝑣 , dv ⊲ 𝑣 → 𝑣 ′, and dv ⊲ 𝐸 ⊢ 𝑒 → 𝐸′ ⊢ 𝑒′, then 𝐸′ ⊢ 𝑒′ ⇒ 𝑣 ′.

A complete proof of the PUTGET is given in the Appendix
6
. The validity of Theorem 4.11 (Merge

Equivalency), defined as follows, is the key to the proof. This theorem is symmetric, which is

why only one side is specified. Intuitively, it says that the value evaluated by the successfully

merged environment for the expression embedded with inconsistent deltas is the same as the

value evaluated by the original expression in the pre-merged environment. Specifically, it states

that, when evaluated under the successfully merged environment 𝐸, the value of the expression 𝑒′
1

remains equal to the value of 𝑒1 as evaluated under 𝐸1 before the merge. Here, the expression 𝑒′
1

obtained by merging the environments 𝐸1 and 𝐸2, which bind free variables in 𝑒1 and 𝑒2 respectively,

may potentially be embedded with inconsistent deltas.

Theorem 4.11 (Merge Eqivalency). If (𝐸, 𝑒′
1
, 𝑒′

2
) = 𝐸1

𝑒1⊗𝑒2𝐸2 and 𝐸1 ⊢ 𝑒1 ⇒ 𝑣 , then 𝐸 ⊢ 𝑒′
1
⇒ 𝑣 .

5 CASE STUDY
This case study aims to demonstrate the expressiveness of our delta language, DM, and the effective-

ness of our fusion algorithm. Firstly, we develop a prototype SVG editor, FuseDM
7
, which supports

common direct manipulations for editing SVG output and provides easy extensibility for several

manipulations. Secondly, by implementing 14 benchmark examples from Sketch-n-Sketch using

FuseDM, we demonstrate that the code-insensitive direct manipulations are effective and let users

focus on manipulating outputs instead of source programs.

5.1 Expressiveness of the Delta Language DM
As shown in Table 5, using our delta language DM, we implement a few common direct manip-

ulations for editing SVG output, which is code-insensitive. These direct manipulations, such as

Drag, Group, Alignment, and Equidistant, are commonly found in various graphic editors, such as

PowerPoint.

Overall, direct manipulations come into three main categories according to their implementation

inDM. Basic operations include modifications to the properties of a single graphic, mainly expressed

by arithmetic deltas. Relating operations establish relationships between graphics, such as copying

and grouping, which are mainly expressed by constraint creations. Recursive operations iterate

over a group of graphics, such as dragging groups, as mainly expressed by the list folding. Mixed

6
The Appendix is available at https://xingzhang-pku.github.io/pub/POPL24-Appendix.pdf.

7
FuseDM is available at https://github.com/xingzhang-pku/FuseDM, for which we contribute nearly 7000 lines of Elm

[Czaplicki 2012] and JavaScript code.We also upload the generated code of benchmark examples to the folder “/src/Examples”.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

https://xingzhang-pku.github.io/pub/POPL24-Appendix.pdf
https://github.com/xingzhang-pku/FuseDM

41:22 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

operations are both relating and recursive operations that establish relationships for a group, such

as alignment and equidistant. We list examples of how to use DM to implement direct manipulations

in Sections 2 and 3.1.

To demonstrate the extensibility of the delta language DM, we also implement several extended

direct manipulations that are not supported by Sketch-n-Sketch, as marked with ★ in Table 5. For

example, an alignment operation on the y-axis is already given in Section 2, and suppose that we

want to add a new operation to align circle centers. We just need to adjust the delta for alignment

on the y-axis to the following one. Furthermore, arbitrary alignment can be implemented in a

similar way.

intro center by (nth 0 ◦ nth 1 ◦ id) into
dfold (𝜆𝑥 .(0, 𝑥 + 1)) (𝜆𝑥.modify 1 (repl center)) 0

while in Sketch-n-Sketch, we may need to define a new operation with its corresponding program

transformation. Another example is the "Equiangular" operation, which derives from the "Equidis-

tant" operation. The "Equiangular" operation manipulates graphics to be distributed at equal angles

around a specific point, serving as the center of the circle.

5.2 Effectiveness of Fusion
Using direct manipulations supported by FuseDM, we implement 14/16 benchmark examples from

blank code, all of which are from Sketch-n-Sketch, as shown in Figure 17. By implementing these

examples, we identify the strengths of FuseDM: (1) It allows developers to focus on manipulating

outputs instead of source programs. (2) It guarantees correctness that the manipulated output can

be obtained through executing the modified program fused with the direct manipulation.

For the two unimplemented examples, one is the recursive von Koch snowflake design [von Koch

1904], which requires manipulating execution intermediates of the source program and building

a recursive function. Another example is “Xs”, which are letters of different sizes but the same

shape “X”, arranged in small squares. It requires precise control over creating an abstract function

through “direct manipulation”, i.e., the Abstract operation that abstracts a function by extracting

free variables as parameters.

Below, we discuss the general process of how we use FuseDM to implement the benchmark

examples. Next, we discuss a few typical examples, comparing the sequence of operations to

Sketch-n-Sketch.

5.2.1 Authoring. The #Ex column of Table 5 indicates the number of examples in Figure 17 in

which the operation is used. The authoring process can be broadly classified into two categories.

Instances without too many repeating graphics, such as Examples i-v, vii, xii, and xiii, mainly

employ the draw-relate process. We first draw the initial graphics and then establish relationships

between their coordinates and sizes. For example, in Example i, after drawing two rectangles, we

add relationships such that the width of the left rectangle is half that of the right, and the points

where the two rectangles are joined are exactly identical.

On the other hand, for the remaining instances, we mainly utilize the group-iterate process,
where we group several graphics together and then perform recursive operations. For example,

in Example xi, after grouping five circles together, we use the “Align Center” operation to make

the circles concentric, and then use the “Equiradiidiff” operation to make the difference in radius

between each pair of adjacent circles equal.

5.2.2 Typical Examples Compared to Sketch-n-Sketch. Below, we list two different operation se-

quences in FuseDM and Sketch-n-Sketch that implement the same benchmark examples. From this,

we show that the graphics design using code-sensitive direct manipulations of Sketch-n-Sketch

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:23

LOC denotes the number of lines of generated source code.

Fig. 17. Benchmark Examples

can also be completed using the code-insensitive ones defined in FuseDM. To further clarify, our

direct manipulations are really for the output, while theirs are for the source program.

Example 5.1. N Boxes (Example viii). In FuseDM, first we draw a blue rectangle and copy it six

times. Then, we group all rectangles. Finally, we align them on the y-axis and distribute them

equally spaced on the x-axis, using the Align (Y-axis) and Equidistant operations, respectively.

In Sketch-n-Sketch, we first use the “PointsBetweenSepBy” tool to create a list of equally spaced

points (called List1) as an intermediate list in the program instead of in its final output. Then, we

draw a rectangle. Finally, we use the “RepeatOnExistingList” tool to make the drawn rectangle

repeat over the points in List1, i.e., the coordinates of the copied rectangles are set to the points in

List1. The “RepeatOnExistingList” tool is essentially using the pre-defined list method map to map

points of the existing list in the program to repeated rectangles. For one thing, users need to know

the specific definition of “List1” in the program to understand the effect of the operation, as there

may be multiple lists leading to different effects. For another, users need to have experience using

map to more easily understand this process, as the essence of this process is manipulating the code

in a different form. □

Example 5.2. Target (Example xi). In FuseDM, first we draw five circles (of the same initial color)

and group them. Then, we align the centers of the circles. Afterwards, we employ the recursive

operation “Every 2”, enabling the color of the concentric circles to repeat in a cycle of two (in fact,

we can define repetitions of any length). Finally, we use the “Equiradiusdiff” operation to make the

difference of the radii of each pair of adjacent circles equal.

In Sketch-n-Sketch, we draw three concentric circles to the same center point and select them

to invoke “REPEAT BY INDEXED MERGE”, which maps an anonymous function that takes an

index (\i -> ...) over the list [2,1,0]; each index is thus transformed into one of the circles, and

their differences—radius and color—are turned into expression holes. Sketch-n-Sketch employs

sketch-based synthesis [Solar-Lezama 2008] to resolve these holes. However, we need to select

the right synthesized expressions from all the returned solutions for holes, e.g., mod i 2 == 0 to
express the alternating colors and base + i*width to calculate the radii of circles. After filling the

holes, we get the desired target. □

To sum up, supporting code-insensitive direct manipulations is the main difference between our

tool FuseDM and Sketch-n-Sketch. In Sketch-n-Sketch, developers are essentially manipulating

the source program. What is more, some operations create intermediate data in the program that

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:24 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

fails to effectively reflect in the output, thus being unable to guarantee correctness and causing

confusion for users. Besides, they use sketch synthesis to replace more customized operations,

which is a good way to facilitate extensions but also requires users to be aware of the program.

5.3 Limitations
All well-defined direct manipulations expressed by the delta language (DM) can be brought to

source programs by fusion. Nevertheless, the current delta language only encodes concrete direct

manipulations on values and lacks the abstraction ability to parameterize direct manipulations and

abstract graphics into functions. For example, the N Boxes example is implemented by drawing

seven boxes repeatedly, where the number 7 is fixed and cannot be parameterized to an arbitrary

number. The reason for this is that we avoid introducing lambda abstractions into the delta language

to simplify the fusion of deltas into programs. Furthermore, the current delta language employs

the list folding to implement recursion, whose recursive form is restrictive. This approach may

not be user-friendly for developers to encode more general recursive operations. To address these

limitations, we will incorporate lambda abstractions and general recursions into the delta language

in the future.

6 RELATEDWORK
Our work on fusing direct manipulations into general functional programs is closely related to

bidirectional live programming, delta-based bidirectional transformations, and functional expression

fusion.

6.1 Bidirectional Live Programming
Bidirectional live programming (BLP) tightly couples the intuitiveness of direct manipulation of

outputs with the abstractness and repeatability of text-based programming. There are two main

types of BLP systems: state-based systems and operation-based systems.

6.1.1 State-based BLP Systems. Most existing BLP systems are state-based, i.e., they only consider

the state of the manipulated output. Specifically, they can be subdivided into those that use tracking

and those that use bidirectional evaluation.

The following two works both modify the program by tracking the execution of programs.

Capstudio [Fukahori et al. 2014] traces the program execution history, i.e., rendering function call

log, associated with the manipulated output. When developers manipulate the output, Capstudio

adds or subtracts a number from the related arguments of the function call to equal the manipulated

output. Sketch-n-Sketch [Chugh et al. 2016] presents trace-based program synthesis, which tracks

the provenances of the constants in the program and establishes value-trace equations with the

manipulated output to be solved by a constraint solver. Unlike our work that can modify the

program structure to some extent, they only modify the function application arguments or program

constants, limiting the expression of developers’ modification intentions.

Sketch-n-Sketch [Mayer et al. 2018], Bidirectional Preview [Zhang and Hu 2022], and BiOOP

[Zhang et al. 2023a] extend the standard evaluation with a backward update evaluation that

propagates the updated output value to program constants by backtracking the forward evaluation.

Our fusion algorithm is inspired by backward update evaluation, but there are three significant

differences. (1) We take an operation-based approach that propagates deltas, whereas they take a

state-based approach that propagates values. (2) Unlike our approach that can modify program

structures by embedding direct manipulations, they only modify constant literals in programs. (3)

We adopt the optimized merge of variable bindings, so that the updated program, which is fused

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:25

with a direct manipulation, executes to produce the exact manipulated output, whereas they cannot

due to using the three-way merge.

6.1.2 Operation-based BLP Systems. Operation-based BLP systems take the process of manipulation

into account, such as the two follow-ups of Sketch-n-Sketch [Hempel and Chugh 2016; Hempel

et al. 2019]. The former follow-up provides GUI-based operations for drawing shapes, relating

shapes to each other, grouping shapes together, and creating reusable abstractions. It realizes them

by tracing links between code fragments and output and performing program transformation on

the code fragments linked to the manipulated sub-values. Sketch-n-Sketch [Hempel et al. 2019]

exposes intermediate execution products for manipulation and presents a mechanism for contextual

drawing, requiring knowledge about source programs.

There are three significant differences between our work and the operation-based versions of

Sketch-n-Sketch. (1) Our direct manipulations can express developers’ intentions for modifying

outputs and source programs more clearly. This is because we implement direct manipulations by

using the delta languageDM, which have determined modification acts as defined by their semantics.

In Sketch-n-Sketch, on the other hand, the modification behavior of some operations is ambiguous.

They use sketch-based synthesis to heuristically give developers some possible modifications for

the program to choose from. (2) We support easier customization for direct manipulations using the

delta language DM, only focusing on outputs, while customization in Sketch-n-Sketch needs to add

its corresponding program transformation. (3) We support code-insensitive direct manipulations

for output values. Therefore, direct manipulation users only need to focus on the output without

being aware of the source program.

6.2 Delta-based Bidirectional Transformations
Bidirectional transformations (BXs) [Czarnecki et al. 2009] are a mechanism for maintaining the

consistency of two (or more) related sources of information, which originates the view update
problem in databases. Traditional algebraic frameworks for bidirectional transformations are state-

based: the input and output are states of data. Whereas in delta-based bidirectional transformations,

the synchronizer tries to understand what the delta is that resulted from the update and then tries

to propagate the delta [Diskin et al. 2010]. In this sense, our work is a delta-based bidirectional

transformation.

There have been many studies of delta-based bidirectional transformations. Bancilhon and

Spyratos [1981] propose a method for defining translators that translate updates on views into

updates on the underlying database. Melnik et al. [2008] propose a technique for propagating view

updates incrementally in a transformation language using view maintenance. Diskin et al. [2011]

build delta-based generalizations of known state-based frameworks for symmetric model transfor-

mations. Edit lenses [Hofmann et al. 2012] offer a general theory that works with descriptions of

changes to data structures rather than with the structures themselves.

Our fusion algorithm can be seen as a translator that transforms the output updates expressed

in the delta language DM into program updates. While existing work has focused on relational

views, model transformations, and data structures, we are the first to study delta-based bidirectional

transformations on general-purpose functional programs and their outputs.

6.3 Functional Expression Fusion
Many studies on the fusion of functional expressions, such as Takano and Meijer [1995], Ohori

and Sasano [2007], and Ureche et al. [2015], remove unnecessary intermediate data structures to

improve the efficiency of program execution. Below, we discuss two of the most classic efforts.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

41:26 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Deforestation [Wadler 1988] presents an algorithm that transforms any term composed of func-

tions into treeless form to eliminate intermediate lists and trees. However, the technique is only

applicable to a subset of first-order expressions. Chin [1992] presents the safe fusion that extends

deforestation to all first-order programs through the adoption of the producer-consumer view of

functions. Besides, with the help of high-order removal transformation, they extend deforestation

to all well-typed high-order programs. We borrow the concept of “expression fusion” to describe

the insertion of direct manipulations into general-purpose functional programs. The difference,

however, is that in the context of bidirectional live programming, our approach does not eliminate

intermediate data but simply applies direct manipulations to program constants or embeds them

directly into the program as functions.

7 CONCLUSION AND FUTUREWORK
This paper presents a new operation-based framework for bidirectional live programming that

fuses code-insensitive direct manipulations into source functional programs to get the manipulated

output. Specifically, we design a simple but expressive delta language, DM, for manipulating output

values that can express many commonly used direct manipulations in visual SVG editors. Then,

we present the key fusion algorithm that propagates direct manipulations into program constants

whenever possible; otherwise, the algorithm embeds them into the “proper positions” where

variables are updated inconsistently. We guarantee that our fusion algorithm satisfies correctness,

i.e., that the modified program that has been fused with a direct manipulation executes to get the

exact manipulated output. To demonstrate the expressiveness of our delta language DM and the

effectiveness of our fusion algorithm, we implement a prototype SVG editor, FuseDM, to support

code-insensitive direct manipulations for editing SVG output. Using FuseDM, we successfully

implemented 14 benchmark examples from Sketch-n-Sketch.

We now outline two future works. First, the delta language may be extended. To support param-

eterizing direct manipulations and abstracting graphics into functions, lambda abstractions need to

be introduced into the delta language. Second, FuseDM’s usability need to be enhanced. There are

two further improvements. One is the post-processing of refactoring and reformatting the code

after embedding deltas into the source program, because the present syntax-based transformation

from deltas to expressions may not be easy to read. Another improvement involves integrating a

constraint (relationship) solver into the visual editor that would automatically assist developers in

maintaining the relationships between all graphics. This is essential, as it can be challenging for

developers to manually track and maintain all the implicit relationships between graphics. In that

case, for example, if the developer adds a relationship such that the heights of two rectangles are

the same and then resizes the height of one rectangle, the other rectangle should resize to the same

value automatically.

ACKNOWLEDGEMENTS
The authors would like to thank anonymous reviewers for many helpful suggestions. This work

was partly supported by the National Key Research and Development Program of China (No.

2021ZD0110202) and the Natural Science Foundation of Fujian Province for Youths (No. 2021J05230).

DATA AVAILABILITY STATEMENT
Our tool FuseDM is an open-source project[Zhang et al. 2023b], which contains all the source code

and a detailed README file.

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

Fusing Direct Manipulations into Functional Programs 41:27

REFERENCES
F. Bancilhon and N. Spyratos. 1981. Update Semantics of Relational Views. ACM Trans. Database Syst. 6, 4 (dec 1981),

557–575. https://doi.org/10.1145/319628.319634

Wei-Ngan Chin. 1992. Safe Fusion of Functional Expressions. SIGPLAN Lisp Pointers V, 1 (jan 1992), 11–20. https:

//doi.org/10.1145/141478.141494

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Programmatic and direct manipulation, together at

last. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Jun 2016).

https://doi.org/10.1145/2908080.2908103

Evan Czaplicki. 2012. Elm: A delightful language for reliable webapps. https://elm-lang.org/ Accessed: 2023-07-04.

Krzysztof Czarnecki, Nate Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James Terwilliger. 2009. Bidirectional

Transformations: A Cross-Discipline Perspective, Vol. 5563. 260–283. https://doi.org/10.1007/978-3-642-02408-5_19

Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. 2010. From State- to Delta-Based Bidirectional Model Transfor-

mations. In Proceedings of the Third International Conference on Theory and Practice of Model Transformations (Málaga,

Spain) (ICMT’10). Springer-Verlag, Berlin, Heidelberg, 61–76.
Zinovy Diskin, Yingfei Xiong, Krzysztof Czarnecki, Hartmut Ehrig, Frank Hermann, and Fernando Orejas. 2011. From

State- to Delta-Based Bidirectional Model Transformations: The Symmetric Case. In Proceedings of the 14th International
Conference on Model Driven Engineering Languages and Systems (Wellington, New Zealand) (MODELS’11). Springer-Verlag,
Berlin, Heidelberg, 304–318.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan Schmitt. 2007. Combinators

for Bidirectional Tree Transformations: A Linguistic Approach to the View-Update Problem. 29, 3 (may 2007), 17–es.

https://doi.org/10.1145/1232420.1232424

Koumei Fukahori, Daisuke Sakamoto, Jun Kato, and Takeo Igarashi. 2014. CapStudio: An Interactive Screencast for Visual

Application Development. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/

2559206.2581138

Brian Hempel and Ravi Chugh. 2016. Semi-Automated SVG Programming via Direct Manipulation. In Proceedings of the
29th Annual Symposium on User Interface Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing

Machinery, New York, NY, USA, 379–390. https://doi.org/10.1145/2984511.2984575

Brian Hempel, Justin Lubin, and Ravi Chugh. 2019. Sketch-n-Sketch: Output-Directed Programming for SVG. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19).
Association for Computing Machinery, New York, NY, USA, 281–292. https://doi.org/10.1145/3332165.3347925

Martin Hofmann, Benjamin Pierce, and Daniel Wagner. 2012. Edit Lenses. In Proceedings of the 39th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (Philadelphia, PA, USA) (POPL ’12). Association for Comput-

ing Machinery, New York, NY, USA, 495–508. https://doi.org/10.1145/2103656.2103715

Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional Evaluation with Direct Manipulation. Proc. ACM Program.
Lang. 2, OOPSLA, Article 127 (oct 2018), 28 pages. https://doi.org/10.1145/3276497

Sergey Melnik, Atul Adya, and Philip A. Bernstein. 2008. Compiling Mappings to Bridge Applications and Databases. ACM
Trans. Database Syst. 33, 4, Article 22 (dec 2008), 50 pages. https://doi.org/10.1145/1412331.1412334

Atsushi Ohori and Isao Sasano. 2007. Lightweight Fusion by Fixed Point Promotion. In Proceedings of the 34th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Nice, France) (POPL ’07). Association for

Computing Machinery, New York, NY, USA, 143–154. https://doi.org/10.1145/1190216.1190241

Armando Solar-Lezama. 2008. Program synthesis by sketching. University of California, Berkeley.

Akihiko Takano and Erik Meijer. 1995. Shortcut Deforestation in Calculational Form. In Proceedings of the Seventh
International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA)
(FPCA ’95). Association for Computing Machinery, New York, NY, USA, 306–313. https://doi.org/10.1145/224164.224221

Vlad Ureche, Aggelos Biboudis, Yannis Smaragdakis, and Martin Odersky. 2015. Automating Ad Hoc Data Representation

Transformations. SIGPLAN Not. 50, 10 (oct 2015), 801–820. https://doi.org/10.1145/2858965.2814271

H. von Koch. 1904. Sur une courbe continue sans tangente obtenue par une construction geometrique elementaire. Norstedt &
soner. https://books.google.com.hk/books?id=kf3NnQAACAAJ

Philip Wadler. 1988. Deforestation: Transforming Programs to Eliminate Trees. Theor. Comput. Sci. 73, 2 (jan 1988), 231–248.

https://doi.org/10.1016/0304-3975(90)90147-A

Xing Zhang, Guanchen Guo, Xiao He, and Zhenjiang Hu. 2023a. Bidirectional Object-Oriented Programming: Towards

Programmatic and Direct Manipulation of Objects. Proc. ACM Program. Lang. 7, OOPSLA1, Article 83 (apr 2023), 26 pages.
https://doi.org/10.1145/3586035

Xing Zhang and Zhenjiang Hu. 2022. Towards Bidirectional Live Programming for Incomplete Programs. In Proceedings of
the 44th International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE ’22). Association for Computing

Machinery, New York, NY, USA, 2154–2164. https://doi.org/10.1145/3510003.3510195

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

https://doi.org/10.1145/319628.319634
https://doi.org/10.1145/141478.141494
https://doi.org/10.1145/141478.141494
https://doi.org/10.1145/2908080.2908103
https://elm-lang.org/
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/2559206.2581138
https://doi.org/10.1145/2559206.2581138
https://doi.org/10.1145/2984511.2984575
https://doi.org/10.1145/3332165.3347925
https://doi.org/10.1145/2103656.2103715
https://doi.org/10.1145/3276497
https://doi.org/10.1145/1412331.1412334
https://doi.org/10.1145/1190216.1190241
https://doi.org/10.1145/224164.224221
https://doi.org/10.1145/2858965.2814271
https://books.google.com.hk/books?id=kf3NnQAACAAJ
https://doi.org/10.1016/0304-3975(90)90147-A
https://doi.org/10.1145/3586035
https://doi.org/10.1145/3510003.3510195

41:28 Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu

Xing Zhang, Ruifeng Xie, Guanchen Guo, Xiao He, Tao Zan, and Zhenjiang Hu. 2023b. FuseDM. https://doi.org/10.5281/

zenodo.8419913

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 41. Publication date: January 2024.

https://doi.org/10.5281/zenodo.8419913
https://doi.org/10.5281/zenodo.8419913

	Abstract
	1 Introduction
	2 Overview
	2.1 Framework
	2.2 Illustrative Example

	3 Delta Language for Direct Manipulations
	3.1 Syntax of Delta Language DM
	3.2 Semantics of Delta Language DM

	4 Fusing Direct Manipulation into Programs
	4.1 A Core Functional Language for Source Programs
	4.2 Fusion Algorithm
	4.3 Correctness

	5 Case Study
	5.1 Expressiveness of the Delta Language DM
	5.2 Effectiveness of Fusion
	5.3 Limitations

	6 Related Work
	6.1 Bidirectional Live Programming
	6.2 Delta-based Bidirectional Transformations
	6.3 Functional Expression Fusion

	7 Conclusion And Future Work
	References

