A PROOF

We give complete proof for the correctness that a program, when fused with a direct manipulation,
executes to produce precisely the manipulated output. This is essentially the same as verifying that
the bidirectional transformation, established by the fusion and standard evaluation, adheres to the
PUTGET property. The lemmas used in the proof and their respective proof are also provided below.

THEOREM A.1 (PUTGET). IfE+ e = v, dvev~ v', anddv>Et+e~> E' e, thenE + e = v'.

Proor. By induction on the fusion derivation. Below, we show the A-Com, P-App, and P-Case
three cases as representatives.

(1) The A-Com case.

dvi>Ere~E ey dvy>E e~ Extey

dvyodvi>Ere~> Ey ke

(a) According to D-Com, there must be some v; such that dv; > v ~ vy and dv, > v1 ~ v’.
(b) Apply the induction hypothesis for E e = v and dv; > v ~» 01, we have E; I e; = 0;.
(c) Apply the induction hypothesis for E; + e; = v; and dv; > 01 ~> 0’, we have E; I e; = 0/,
which is the final goal.
(2) The P-App case.
Etre = (Ef, Ax.ef) Ere;=0v; dveEpxi> 019 ef ~ E},x — Ugvzoid F e}

’ ’
(E’,/lx.e} >Et+e ~> Ei ke dvo>EF ey~ Ey ke (E' e} ey) = E4“®%E;,

’ ’ ’”
dveEre ey~ E +ef e

For the goal, we must apply E-App because e{’ e, is an application. Therefore, we must in

turn reason about the evaluation of E’ +- e{” and E + e;’. Both are results of a merge, and are
respectively related to E; +] and E; ej.
For E; + ef, it is closely related to the evaluation of E; F e;:
(a) Introduce v, such that dv, > v; ~ v;.
(b) Apply the induction hypothesis for E +- e; = (Ef, Ax.ef) and (E’ ,Ax.e’f >EFe ~ Ei ke,
we have E; - e; = (E’,Ax.ej’,).
Similarly, for E; + e, it is closely related to the evaluation of E; I e,:

(c) Apply the induction hypothesis for E e; = v, and dv, » v; ~» v}, we have E; + e; = 0).
Now we derive the evaluation of E” + e]’ and E’ e}’ respectively from (b) and (c):

(d) By Lemma A.4 and the symmetry of ®, we have E’ e’ = (E, Ax.e}) and E’ + ey = v;.
We can now apply E-App, and it then suffice to show that E}, X = v;id F e} = 0’. Again, we
must reason about the evaluation of e}, which is related to ef:

(e) According to E-App, since E I e; e; = v and E + e; = v,, we have E, x — 019 ey = 0.

(f) Apply the induction hypothesis for E, x — 0,9 F e, = v and dv » Ef,x > vzid Fep ~

dvyoid

dvyoid
E},x = 0, F e}, we have E},x — oot

Fel.= v
2
We are almost done; the above conclusion is slightly different in the environment. By
Lemma A.3, it suffice to show the following equivalence: E}, X véld = E}, X Z)gvzold.
(g) By E-Var, E}, X - vgvzoid F x = v;. The two environments agree on the value of x.
(h) They also agree on any other variable, which is determined by the shared E} part.

(i) By Definition A.2, the two environments are equivalent.

(3) The P-Case case.

Ere=vy Ep=matchogp; dv>EUEmkejfv>EjUE;nl—e;.
subst E;n pj >E+ ey ~> E() = e(’) (E/,e(,)’,e;.’) = Eoe{)@ej/Ej

n ’ 1 n 7
dv>E case ey of {p; — e;}1_, ~ E’ I case ¢j of {p; — ei}i:l/\i#:j u{p; — € }

(a) Introduce v] such that subst E;, p; > vy ~> v7.

(b) Apply the induction hypothesis for E +- ey = vy and subst E;, p; > E - ey ~> Eg - ej, we
have Eq + e’ = v].

(c) By Lemma A.3, we conclude that E’ + e’ = 0].

(d) According to E-Case, since E I case ¢y of {p; — e;}].; = v, wehave EUE,, I ¢; = 0.

(e) Apply the induction hypothesis for E; U Ep, + ej = vand dveEUEp, +ej ~ E; UE] + e,
we have E; UE;, + e;. =0

(f) By Lemma A.3, we have E' UE], ej’. =0

(g) The algorithm preserves the execution path. By definition, E;, = match v] p;. Therefore,
by Lemma A.4, we have E" U matchv] p; v € = v’

(h) By E-Case, E’ + case ¢’ of {p; — ei}fzw.#j u{p; — e;.’} = o, which is the goal. O

Definition A.2 (Equivalent Environment). E; and E; are equivalent (denoted E; = Ey) if they are
structural equivalent and Vx € E, E; - x = vand E; - x = v.

LEmMMA A3. IfE; = E; andE; + e = v, thenEy + e = v.
Proor. By induction on the structure of e. O

LEMMA A.4 (MERGE EQUIVALENCY). If (E, e}, e;) = E1“'®“2Ey, then for every Eyg, EyUE; - ey = 0
implies E UE + e] = v.

Proor. We use induction on the length n of Ej, so the inductive case involves breaking the
environment E; into x + 0%t (mapping for a single variable) and E] (the rest), apply the induction
hypothesis to handle the E{ part, and proceed to x for the final conclusion. Therefore, we need to
reason about the merge operator X, or more specifically, its behaviour on environments with shape
Ei = (E,x = v™).If we have (E,E!, E}) = E, ®x% E, and (E’, E", El") = E| ©x® E}, then E and
E’ (or E{ and E{ ") can only differ in the mapping for x. Specifically, the extra deltas' for x in E and
E! (compared respectively to E’ and E! ") necessarily compose into the delta for x in E; (i.e., dv;),
with the former being the prefix and the latter being the suffix. In case (2), we consider the two
different possibilities of this decomposition of dv;.

By definition of the merge operator (®), assume we have (E, EL, El) = E;“x“E; and €] = El O ;.

1) E; = 0 and n = 0. By definition of the merge operator (®), we have E = () and e; = e/.
y ge op 1
Therefore, the lemma is simple tautology.

(2) Assume for every E] of length n, the lemma is true, i.e., for any E, and Ej, if (E’, e, e;) =
E] ©®% E; and Ej U E] + e; = v, we have Ej U E’ -] = 0. Assume we have (E’,E{’,Eé’) =
E{“'x%E, and e] = E{/ © e;. Then consider E; = (E},x vf‘”) of length n + 1. E] is of length
n, so the induction hypothesis applies.

n this proof, for our convenience, if a variable x is not mentioned in an environment E, we say that the delta for x in E is
id, as if the environment were (E, x vld) instead.

, Vol. 1, No. 1, Article . Publication date: November 2023.

Appendix 3

(@) If E(x) = E1(x) = vf"l, ie, Eand E; agreeson x, let E = E/, x > val‘ Then we have
EqUE; = Eg U (E},x > v™") = (B, x > 0™) UE| = E, UE]
EgUE=EyU (E,x - 0™) = (Epx = o) UE = Ej UFE’
where we define Ej = (Eg,x val). Also, since E and E; agrees on x, by definition

of the merge operator, we have either E{/ = E{ or (EI,,x — vid) = E!l, and therefore
E{’ © e; = E! © e;. Now we may apply the induction hypothesis and the lemma is proved.

(b) Otherwise E = (E',x — o®), El = (E! " x va{D), and we have the factorisation
dvy = dle o dv. Then we can reason as follows:
EcUEi e =0
e {E=(E,x— val), dvy = dvP o dv }

dvPodv
’ 1
Eo UE, x — 0

= {LemmaAJ5}

Fe =0

EoUE/, x vf" Fe[x — exp(dle) x] = v
& {LetE} = (Eyx 0%}
Ej UE, + e;[x — exp(dvD) x] = o,
= { induction hypothesis }
EjUE + (E 0 e [x > exp(dvP) x]) = 0,
< { definition of © }
B UE F (B .x 0™) 0e) = 0,
o {E=@Exmo™))
EJUE F (Eloe) = v
& {E=(E,x— o), E; = (Ep,x - 0{") }
E¢UEF (Eloe) = 0;
Therefore, by induction on n, the lemma holds for E; of any length. m]
LEMMA A5, If E,x > 0™1°®2 p ¢ = o), then E, x > 0% + e[x > exp(dv;) x] = 0.

Proor. By induction on the structure of e. O

B SEMANTICS OF DELTA LANGUAGE

(D-1d] (D-Repl] Or aexp =o' (D-Com] dvir o~ 0 dvy v~ v
-Id] ————— -Re; -Com
ideo~ 0 P repl aexp> v~ v’ dvyodvibo~ 0’
[D-Add] [D-Mul]
+patom> n ~> n+ eval (atom) xpatom>n ~> n = eval (atom)
dviv o~ o) dvye oy~ 0 dviv o~ o dvze oy~ 0
D-Tuple D-Cons
[ple (dv1, dva)a > (01, 02) ~ (0], 0)) !] dvy zp dva e oy vp ~> 0] 0
n>0 modify (n—1) dve vy ~ 0] dve v ~ o]
[D-Mod-1] [D-Mod-2]
modify n dve oy vy ~> vy =0 modify 0 dve vy :: vy ~> 0] 0y
n>0 insert(n-1) atomvv; ~ v,
[D-Ins-1] - [D-Ins-2] —
insert n atomv> vy :: U3 ~> vg v; insert 0 atomw vy :: v3 ~> atom :: V1 :: Uy

, Vol. 1, No. 1, Article . Publication date: November 2023.

n>0 delete(n—1)rv~ 0,

[D-Del-1] [D-Del-2]
delete ne oy vy ~> 01 = v delete 0> 0y :: vy ~> vy
0 v derive acc = (arg,acc’) todelta = Ax.dv dvi = dv[x > arg]
dvi > 01 ~ v dfold derive todelta acc’ v vy ~> vy
[D-Fold]

dfold derive todelta acc> vy :: vg ~> v{ :: vé

01 =0 |y select dv[x i v]>o~> 0

[D-Constraint] - -
intro x by select into dve o~ o’

C SEMANTICS OF SELECTORS FOR VALUES

(v; :v2) | head o select =0y |, select [S-Head] (v1 2 v2) o tail oselect = wy |, select [S-Tail]
(v1,v3) |o fst o select =y |p select [S-Fst] (v1,v2) |o sndoselect =uy |, select [S-Snd]
v |pid =0 [S-1d]

D PROPAGATION RULES OF FUSION ALGORITHM

E(x)=0® dveo~> o E(x) = o
[E-Var] [P-Var]
Erx=7d dvi > EF x ~ E[x — o®1°®] | x
[E-Lam] [P-Lam)]
E+ Ap.e = (E, Ap.e) (E',Ap.e’) > Et+ Ap.e ~ E' + Ap.€’

Ete = (Ef,/lx.ef) Etre = v Ef,x|—>vzidl—ef20
(E-App]

Etrele; >0

dvyoid ’
Fe
2 f
7 ’
(E’,/lx.e})>E|—e1 ~ Ei1 ke dvy>Er ey~ Ex ke (E' el e)) = E1“102E,

Ete = (Ef,Ax.ef) Erer= v dv>Ef,x»—>nZid|—ef«»E},xr—>v

[P-App]
dveEre e~ E kel ef
Evre = v Ep=matchvyp; EUEnte; = v
[E-Case]
E+ case ey of {p; — e;j}]L; = v;
Evre = v Epm=matcho pj dv>EUEml—ej'\«>EjUE;nl—e}
’ ’
subst Ey,, pj>E+ eg ~ Eg - €] (E’,e(’)',e}’) =Ey0Q% E;
[P-Case]
dve E - case e of {p; — e;}L, ~» E’ + case ej of {p; — ei};’:M#]_ u{pj— e}’}
+an>EFe; ~ Ejkef E+re = ny
(E’,e{’,e;):Ele{®62E +a(n/nz) > Er e~ Ej ke (E’,e{',e§)=Elei®ezE
[P-Add] [P-Mul]

+an>Ere +e;~ E' el +e +an>Ere xe;~ E' kel e

E APPLICATION RULES OF FUSION ALGORITHM

n=n;+n n=ny*n
[A-Id] — [A-Add] 1T [A-Mul] 17
ideEte~ Ere +ani>Erny,~Ern #ani>EFny;~ EFn
dV1>E|-e’\9E1|-€1 dv2>E1I—elszl-e2
[A-Repl] [A-Com]
repl aexp> E + e ~> E + aexp dvyodvicEre~ Est e

’ ’
dvi>Erei~ Ere] dvy»Ere;~>Eyre;, (E.e e))=E“1082E,

[A-Tuple] - —
(dvi,dva) > E+ (e1,e2) ~ E' + (ef,e])

7 ’
dvi>Erei~ Eirel dvw>Ere;~ Eyre, (E. e e))=E“198%2E,

[A-Cons]
dvidvaeEreeg~ E' el e

n>0 modify (n—-1) dveEre;~ Ez ke (E’,e;,eé’):E“@eéEz
[A-Mod]

modify n dveEr e :ex~ E Fej e

, Vol. 1, No. 1, Article . Publication date: November 2023.

Appendix 5

n>0 insert(n-—1)atom>Ere;~> Exte; (E, e, e))=E" ®%E,

[A-Ins] -
insert n atom>EF e ey~ E' F ei :: eé’
n>0 delete(n—1)>Ere;~ Exre;, (E,ej,e))=E" ®e§E2
[A-Del]
deleten>Et e :iep~> E' +ef ey
e e selecty = ez;ef Erey =0, dveE x> vzid Fep~ Ei,x - v;lVZOid [e}
dvy>Er ey~ Ep ke (E, e}’,eé’) = Elef®e§Eg
[A-Constraint] - -
intro x by select into dveE+e~> E' + (Ax.e}) ey
F SEMANTICS OF SELECTORS FOR EXPRESSIONS
e; | selecty = e;ef ey | selecty = e;ef
[S-Head] [S-Tail]
e; ey |o (head o select), = e;ef =2 e; er : ex(tail o select), = e;e; = ef
er | select, = e;ef ey | select, = e;ef
[S-Fst] [S-Snd] [5-1d]
(e1,e2) e (fstoselect)x = e; (er, e2) (e, e2) |e (snd o select) = e; (e1, er) el ide =e;x

G TRANSFORMATIONS OF DELTAS TO EXPRESSION FUNCTIONS
(1) exp(id) =Ax.x

(2) exp(reple) = Ax.e
(3) exp(+an) =Axx+n
(4) exp(xan) = Ax.x*n
(5) exp((E,Ap.e)) =AfAp.ECe
(6) exp(dv; o dvy) = Ax.exp(dvy) (exp(dvz) x)
(7) exp((dvy, dvz)a) = A(x, y).((exp(dvy) x), (exp(dvz) y))
(8) exp(dvy = dvy) = Ax = xs.(exp(dvy) x) == (exp(dvy) xs)
(9) exp(modify n dv) = modify n exp(dv)
(10) exp(insert n atom) = insert n atom

(11) exp(delete n) = delete n

(12) exp(dfold derive (Aa.dv) acc) =
Als.let f = Ax.A(res, acc).
let (arg, acc’) = derive acc in
let fi = exp(dv[a +— arg]) in
(concat res [fi x1, acc”)

in foldl f (L1, acc) Is

(13) exp(intro x by select into dv) = Ay.(Ax.exp(dv) y) (select y)

, Vol. 1, No. 1, Article . Publication date: November 2023.

	A Proof
	B Semantics of Delta Language
	C Semantics of selectors for values
	D Propagation Rules of Fusion Algorithm
	E application rules of fusion algorithm
	F semantics of selectors for expressions
	G Transformations of Deltas to Expression Functions

