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Many bidirectional programming languages, which are mainly functional and relational, have been designed to

support writing programs that run in both forward and backward directions. Nevertheless, there is little study

on the bidirectionalization of object-oriented languages that are more popular in practice. This paper presents

the first bidirectional object-oriented language that supports programmatic and direct manipulation of objects.

Specifically, we carefully extend a core object-oriented language, which has a standard forward evaluation

semantics, with backward updating semantics for class inheritance hierarchies and references. We formally

prove that the bidirectional evaluation semantics satisfies the round-tripping properties if the output is altered

consistently. To validate the utility of our approach, we have developed a tool called BiOOP for generating

HTML documents through bidirectional GUI design. We evaluate the expressiveness and effectiveness of

BiOOP for HTML webpage development by reproducing ten classic object-oriented applications from a Java

Swing tutorial and one large project from GitHub. The experimental results show the response time of direct

manipulation programming on object-oriented programs that produce HTML webpages is acceptable for

developers.
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1 INTRODUCTION
In the programming language community, there has been a lot of work on designing and imple-

menting bidirectional programming languages. In bidirectional programming, not only can the

output be obtained through a forward evaluation function get that is applied to the input, but

also the updated input can be computed through a backward evaluation function putback that is

applied to the original input and the altered output. For example, LITTLELEO [Mayer et al. 2018], Bi-X
[Nakano et al. 2008], and formlenses [Rajkumar et al. 2014] are designed for website development;

lens combinators [Foster et al. 2007] and X [Hu et al. 2004] for tree-like data; little [Chugh et al.

2016] for SVG graphics design; and CapStudio [Fukahori et al. 2014] for game application design.
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Fig. 1. A Java-like Program Fig. 2. An HTML Menu Bar

Despite many bidirectional languages, functional or relational, as far as we know, there is no

study on bidirectional object-oriented languages. Object-oriented programming languages (OOPLs)

are more complex than functional languages because they not only describe how the output is

computed from the input, but also need to keep a good program structure for maintainability

and reusability through class inheritance hierarchy, mutable data, and object management. This

program structure poses big challenges in designing bidirectional semantics for OOPLs because, in

the backward evaluation, we have to carefully design a putback strategy that can propagate the

updates on the output back to the source program that contains the class inheritance hierarchy

and dynamic object structure. To see the challenges concretely, let us consider a Java-like program

given in Figure 1 that outputs a menu bar in HTML, as shown in Figure 2.

The first challenge is how to handle ambiguity in class hierarchy updating. In Figure 1, the class

Menu extends the class MenuItem in Line 8, and fileMenu is a Menu object that invokes the method

setTitle inherited from MenuItem in Line 19, which gives "File(F)..." in the Menu Bar in Figure 2.

Now, supposing that we want to modify the Menu Bar by changing “File(F)...” to “File(F) >”, we can

see that the class hierarchy in the source program can be updated in several ways to accommodate

this modification to the output: (1) changing “...” to “ >” in setTitle defined in MenuItem (Line 4), (2)

adding an overriding method setTitle to Menu leavingMenuItem unchanged, or (3) adding a subclass

of Menu to override setTitle. When the backward updating contains numerous modifications to

the class hierarchy, the number of updating solutions will increase exponentially. It is essential to

reduce the updating ambiguity under the premise that the class hierarchy is correctly updated.

The second challenge is how to handle references. Most OOPLs are not pure and have references

[Pierce 2002]. In Figure 1, color is a reference assigned white in Line 21, and fileMenu is set to color.
Then, color is assigned gray in Line 24, and excelMenuItem is set to color. Now we change the color

of the “Excel” button from gray to brown by editing the HTML code in Figure 2. When propagating

this change back, we need to pay attention to the update order of the two assignments (in Lines 21

and 24) and roll back the value pointed by color in the first updating before the subsequent one. It

means that the assignment in Line 24 should be updated to brown first, and the assignment in Line

21 should stay white.
The third challenge is how to update the object structure by directly manipulating outputs. Exe-

cution of an object-oriented program usually produces a complex graph of interrelated dynamic
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objects, where the links are the references between objects. For example, the Java-like program in

Figure 1 generates some objects that form an object tree rooted at a MenuBar object (not shown).

Nevertheless, the structural information of the object graph may get lost if we perform a simple

conversion from the MenuBar object to HTML, because we cannot know the correspondences

between the HTML fragments and the objects of the running program. We need to find a natural

way to associate the output (e.g., HTML code) with the object graph so that one can manipulate

the dynamic objects by altering the output.

In this paper, we tackle these challenges and propose the first bidirectional object-oriented

language, focusing on GUI design scenarios. We implement a prototype programming tool for de-

veloping HTML webpages, which can support programmatic and direct manipulation of objects. It

enables developers to directly manipulate the output, including objects, and automatically synchro-

nize the manipulated output with the object-oriented program. Our main technical contributions

can be summarized as follows.

• We propose a novel bidirectional object-oriented language called BiFJ (Section 3) by extending

the Featherweight Java [Pierce 2002] with references and giving a new backward evaluation

semantics that can propagate the updates on the output to those on the source program. We

prove that our bidirectional semantics satisfies the round-tripping properties [Foster et al.

2007] when the output is changed consistently (Section 3.4). Particularly,

– we present a Class Structure Refactoring algorithm for dealing with the ambiguity of

back-updating the class hierarchy of an object-oriented program while ensuring that

round-tripping properties are not broken (Section 3.2);

– we give an efficient realization of side-effects (i.e., references) in bidirectional computation.

Unlike functional environments, stores can be handled more efficiently without merging

and only require an effect rollback in the backward evaluation (Section 3.3).

• We implement a prototype programming tool called BiOOP for developing HTML webpages,

which is available online
1
(Section 4). In addition to an efficient implementation of the bidi-

rectional semantics of the language, we propose the idea of "two-stage bidirectionalization"

to deal with runtime object structures: we have a bidirectional transformation between

the BiFJ source program and the object structure, and another bidirectional transformation

between the object structure and the actual representation (e.g., HTML).

• We demonstrate the usefulness of our language and tool (Section 5) by successfully bidirec-

tionalizing all (ten) classic object-oriented applications from a Java Swing tutorial
2
and one

large project from GitHub. We conduct experiments with various direct manipulation interac-

tions on the above examples and obtain the execution time for each example. The experiment

results show that our system is scalable and promising to develop larger applications in the

future.

2 OVERVIEW
To get a flavor of bidirectional object-oriented programming, we shall demonstrate with a concrete

example how developers accomplish a GUI development task through bidirectional object-oriented

programming, i.e., forward programmatic manipulation and backward direct manipulation of the

generated GUI in HTML.

Consider the task of implementing an HTML menu bar for an editor, like the example in Section

1. Using our tool BiOOP, the developer may start with an initial object-oriented program that

1
Available at https://github.com/xingzhang-pku/BiOOP. The execution result is saved in the source code, and our tool can

be used by opening the oop-index.html file in the browser.

2
Available at https://www.javatpoint.com/java-swing.
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Fig. 3. An Initial Object-Oriented Program that Generates an HTML Menu Bar

generates a prototype GUI to be perfected. Then the developer directly manipulates the prototype

GUI to the desired form, while propagating the updates on the GUI to the program so that the

program’s execution produces the desired GUI.

2.1 Initial Object-Oriented Program
We begin with an initial object-oriented program that generates a prototype GUI. Figure 3 shows

a screenshot of our tool, which consists of an object-oriented program (using the Featherweight-

Java-like language BiFJ defined in Section 3.1) on the left; and an HTML menu bar (generated by

forward evaluation of the program) on the right.

The source program is a usual object-oriented one, which consists of three classes, some GUI

components, and the main function. Lines 1-12 are user-defined class declarations. The class Menu

extends the class MenuItem and automatically inherits the field title and the method setTitle. The
class MenuBar has a field called menus which is a list of Menu objects. Lines 13-33 define some

GUI components: the horizontal menu bar with four menus (i.e., File, Edit, View, and Help); the

menu File with three menu items (i.e., Save, Open, and New File); and the menu New File with two

menu items (i.e., Word and PowerPoint). Lines 35-38 define the main function, which initializes the

title of the “Open” menu item, the “New File” menu, and the “File” menu, and displays the whole

menu bar.

2.2 Direct Manipulation
Direct manipulation is one of the most interesting parts of BiOOP, which can be divided into two

categories: value modification of the HTML code and structure modification of the HTML code

using components (corresponding to objects in the program) as units of action. As shown in Figure
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Fig. 4. Framework of BiOOP

Fig. 5. Templates for Custom Classes

4, BiOOP adopts a two-stage bidirectionalization: one is the bidirectional evaluation between the

program and the object structure; the other is the bidirectional translation between the object

structure and the HTML code rendered as an HTML page in the browser. Similar to Sketch-n-Sketch

[Mayer et al. 2018], developers can manipulate the values (e.g., strings) in the HTML page directly

or use the DevTools that come with the browser. BiOOP’s innovation is the ability to manipulate

the HTML page’s GUI components by modifying the program’s object structure.

In the second stage of Figure 4, interpreting objects as HTML code requires writing templates to

specify the correspondence similar to Vue [You 2014] and Angular [Hevery and Abrons 2010]. The

developer clicks the “Templates” button and fills the templates shown in Figure 5 into the pop-up

form: (1) the developer fills the class name into the “Class” column; (2) the developer fills the object

creation into the “Object Template” column, where the fields use variables as placeholders; (3) the

developer fills the HTML defined with the variables declared in the object creation into the “HTML

Template” column.

2.2.1 Value Manipulation. The developer can use the mouse and keyboard to directly manipulate

the menu title “New File...” to “New File ⟩⟩”, as shown in Figure 6(b). After the developer clicks the

“Update” button, a new class Menu0 that extends Menu is added as shown in Figure 6(a), where

the overriding method setTitle is distinct from setTitle of MenuItem (Lines 6-8) in its method body.

Now, if the developer clicks the “Eval” button to execute the updated program, we can get exactly

the same output as Figure 6(b), where the two angle brackets are added after “New File” while titles

of the “File” menu and the “Open” menu item stay the same.

It would be interesting to see if the developer changes both “File (F)...” to “File (F) ⟩⟩” and “New

File...” to “New File ⟩⟩”, as shown in Figure 6(d), an overriding setTitle (Lines 12-14) will be inserted
into the definition of Menu, which replaces “...” with “ ⟩⟩”, as shown in Figure 6(c). If the developer

also changes “Open...” to “Open ⟩⟩” as shown in Figure 6(f), setTitle in MenuItem (Lines 6-8) will be

updated by replacing “...” with “ ⟩⟩”, as shown in Figure 6(e).
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Fig. 6. Value Manipulation: modifying “New File...” to “New File ⟩⟩”

2.2.2 Structure Manipulation. We provide a set of operations to directly manipulate the object

structure in BiOOP, including modifying the type of components, deleting components, and adding

components. To illustrate these operations more specifically, we continue to alter the above GUI

based on Case A in Figure 6.

Modifying Types. In our example, the “Save” menu has only one sub-item called “Save As”, so the

developer may wish to change the “Save” menu to a simple menu item, that is, a button that saves

the file directly after a click. To do so, the developer clicks the “Structurize” button in the tool and

right-clicks the “Save” menu. Then a small pop-up window appears nearby with three items: the first

is the type of the component; the second is to modify the type; the third is to delete the component.

The developer right-clicks the “Modify Type” button, as shown in Figure 7, and a list of component

types appears below, which includes “MenuItem” and “Object” options (the current system only

allows sub-classes to be changed to super-classes, and more options can be added later). The

developer clicks the “MenuItem” option and finds that the type of the “Save” component is modified

to “MenuItem” in the HTML page. Now a backward evaluation will result in the object creation

declared in Line 21 of the program in Figure 3 being updated to new MenuItem([ref "Save"]).

Deleting Components. Suppose that the “Edit (E)” menu encounters some bugs, and the developer

wants to delete it before debugging. As shown in Figure 8, after toggling the “Structurize” button,
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Fig. 7. Modifying Component Types: modifying the “Save” menu to the “MenuItem” type

Fig. 8. Deleting Objects: deleting the “Edit (E)” menu
on the top menu bar

Fig. 9. Adding Objects: adding the “Excel” menu item
to the “New File” menu

the developer right-clicks the “Edit (E)” menu and clicks the third option “Delete” in the pop-up

menu, then the output changes to the bottom of Figure 8 where only three menus appear on the

menu bar. Accordingly, the first element “Edit (E)” of the list in Line 19 is removed, as shown

in Figure 10. After the developer clicks the “Eval” button, the map_ function in Line 21 (built-in

auxiliary function) transforms the string list into a Menu list, and there are only three menus (i.e.,

“File (F)”, “View (V)”, and “Help (H)”) on the top menu bar in the HTML page.

Adding Components. As the editor features increase, the developer may want to add an “Excel”

option to the “New File” menu. As shown in Figure 9, after the developer clicks the “Add One”

button, the ‘+’ symbols appear below the menu bar, menus, and menu items. The developer clicks

the ‘+’ symbol below the “PowerPoint” menu item in the “New File” menu. Then a “PowerPoint”

option is added to the menu because when adding a new component after an existing component,

our tool copies the previous one by default to provide valid initial parameters. The developer only

needs to directly modify the string “PowerPoint” to “Excel” in the output. After clicking the “Update”

button, an element “Excel” is added to the tail of the “New File” menu’s option list defined in Line

33 of the program in Figure 10.

2.3 Summary.
Through a series of direct manipulation on the HTML page, the final program and the menu bar

are shown in Figure 10. The code fragments and the HTML page marked in red are updated. In

summary, in an object-oriented program with the class inheritance hierarchy, recursive function

map_, list data structures, and references (side effects), our tool can automatically synchronize the

program with the HTML code by value and structure manipulation.
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Fig. 10. Updated Program and Menu Bar

3 BIFJ: A BIDIRECTIONAL OBJECT-ORIENTED LANGUAGE
The core of BiOOP is a bidirectional object-oriented programming language BiFJ, whose syntax is

adapted from the Featherweight Java (FJ) language with references, which are both defined in TAPL

[Pierce 2002]. In this section, we give a formal definition of BiFJ. We define the syntax in Section

3.1. We present a bidirectional semantics for BiFJ and focus on the two language features: objects

in Section 3.2 and references in Section 3.3. For other language features, such as conditionals and

arithmetic expressions, their semantics is similar to that proposed in LITTLELEO [Mayer et al. 2018],

so they are omitted. Lastly, we illustrate that the bidirectional evaluation semantics satisfies the

round-tripping properties in Section 3.4.

3.1 Syntax
The syntax of BiFJ is defined in Figure 11. BiFJ follows the syntax of FJ in TAPL [Pierce 2002]

except for the type system. The meta-variable 𝐶𝐿 ranges over class declarations; 𝑀 ranges over

method declarations. The declaration class 𝐶1 extends 𝐶2 {𝑓 ;𝑀} defines a class 𝐶1 that extends

class 𝐶2. 𝐶1 inherits all the fields and methods of 𝐶2. Besides, 𝐶1 can also define some local fields

𝑓 ≡ {𝑓1, ..., 𝑓𝑛} and methods 𝑀 ≡ {𝑀1, ..., 𝑀𝑛} and can override the methods in 𝐶2. The method

declaration 𝑀 introduces a method named𝑚 with the parameter list 𝑝 . The method body is the

single statement return 𝑡 where the variable 𝑡ℎ𝑖𝑠 referring to the object itself is bound in 𝑡 . The

class declaration table (class table for short) 𝐶𝑇 maps class names onto class declarations.

Terms mainly include standard terms, reference extensions, and FJ expressions. Standard terms

include constants 𝑐 , variables 𝑥 , sequences 𝑡1; 𝑡2, list constructions 𝑡1 :: 𝑡2, tuples (𝑡1, 𝑡2), primitive

operations 𝑡1 ⊗ 𝑡2, let-bindings let 𝑥 𝑡1 𝑡2, letrec-bindings (for recursions) letrec 𝑥 𝑡1 𝑡2, condi-
tionals if 𝑡1 𝑡2 𝑡3, and case expressions case 𝑒 (𝑝1, 𝑡1) · · · . Reference extensions include reference
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Class Decl. 𝐶𝐿 :: = class 𝐶1 extends 𝐶2 {𝑓 ; 𝑀}
MethodDecl. 𝑀 :: = 𝑚(𝑝) {return 𝑡;}

Class Decl. Tables 𝐶𝑇 :: = ∅ | 𝐶𝑇, 𝐶 ↦→ 𝐶𝐿

Terms 𝑡 :: = 𝑐 | 𝑥 | 𝑡1 :: 𝑡2 | (𝑡1, 𝑡2) | 𝑡1 ⊗ 𝑡2 | 𝑡1; 𝑡2
| let 𝑝 𝑡1 𝑡2 | letrec 𝑝 𝑡1 𝑡2 | if 𝑡1 𝑡2 𝑡3 | case 𝑡 (𝑝1, 𝑡1) · · ·
| ref 𝑡 | !𝑡 | 𝑡1 := 𝑡2 | 𝑙 | unit | 𝑡 .𝑓 | 𝑡1 .𝑚(𝑡2) | new 𝐶 (𝑡)

Constants 𝑐 :: = 𝑛 | 𝑏 | 𝑠 | []
Operators ⊗ :: = (+) | (∗) | (<) | (&&) | · · ·
Patterns𝑝 :: = 𝑐 | 𝑥 | 𝑝1 :: 𝑝2 | (𝑝1, 𝑝2)

States 𝑆 :: = ∅ | 𝑆, 𝑙 ↦→ 𝑣

Environments𝐸 :: = ∅ | 𝐸, 𝑥 ↦→ 𝑣

Values 𝑣 :: = 𝑐 | 𝑣1 :: 𝑣2 | (𝑣1, 𝑣2) | 𝑙 | unit | new𝐶 (𝑣)

Fig. 11. BiFJ Syntax

creations ref 𝑡 , dereferences !𝑡 , assignments 𝑡1 := 𝑡2, and locations 𝑙 . FJ expressions include the

field access 𝑡 .𝑓 , the method invocation 𝑡1.𝑚(𝑡2), and the object creation new𝐶 (𝑡), where 𝑓 is a field
name,𝑚 is a method name, and the metavariable 𝐶 is a class name.

Constants include numbers 𝑛, booleans 𝑏, strings 𝑠 , empty list [], and primitive operators. Values

include constants, lists 𝑣1 :: 𝑣2, tuples (𝑡1, 𝑡2), locations 𝑙 , unit, and object creations new 𝐶 (𝑣).
Environments 𝐸 bind the free variables in terms. States 𝑆 map locations to values.

3.2 Bidirectional Semantics: Objects
In this section, we propose a bidirectional semantics for objects. We address the challenge of

ambiguity in updating class tables (mentioned in Section 1) in two steps: in the backward evaluation,

we adopt a straightforward modification to the class table called subclassing that always creates a

sub-class and overrides the method; then, we optimize the class table through an algorithm called

Class Structure Refactoring. In this section, the bidirectional evaluation semantics for objects is

presented first, followed by Class Structure Refactoring.

3.2.1 Bidirectional Evaluation. The forward evaluation semantics for Featherweight Java (FJ)

without side effects is presented in TAPL [Pierce 2002]. We expand the forward evaluation semantics

with backward updating semantics for FJ with references, as shown in Figure 12. The big-step

evaluation rules prefixed "F-" are the semantics for forward evaluation, which is a standard evaluator

with a global state 𝑆 and a class declaration table 𝐶𝑇 . The forward evaluation output includes not

only a value 𝑣 but also a state 𝑆1, denoted as “𝑣 ; 𝑆1”. The backward evaluation rules prefixed "B-"

are novel and take the form 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣 ′; 𝑆 ′
1
{ 𝐸′; 𝑆 ′;𝐶𝑇 ′ ⊢ 𝑡 ′, which indicates that “when

the output is altered to 𝑣 ′; 𝑆 ′
1
, the program 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 is updated to 𝐸′; 𝑆 ′;𝐶𝑇 ′ ⊢ 𝑡 ′”. Following the

statement in LITTLELEO [Mayer et al. 2018], “push 𝑣 ′; 𝑆 ′ back to 𝑡” refers to the fact that “the original

term 𝑡 is updated by an altered output 𝑣 ′; 𝑆 ′”.
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Forward Evaluation

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑣;𝑆1

Backward Evaluation

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣′ ;𝑆 ′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′

F-Const
𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑐 ⇒ 𝑐 ;𝑆

B-Const
𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑐 ⇐ 𝑐 ′ ;𝑆 ′ { 𝐸;𝑆 ′

;𝐶𝑇 ⊢ 𝑐 ′

F-Var
𝑣 = 𝐸 (𝑥 )

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑥 ⇒ 𝑣;𝑆

B-Var
𝐸′ = [𝑥 ↦→ 𝑣′ ]𝐸

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑥 ⇐ 𝑣′ ;𝑆 ′ { 𝐸′
;𝑆 ′

;𝐶𝑇 ⊢ 𝑥

F-Obj

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑣;𝑆1

𝐸;𝑆 ;𝐶𝑇 ⊢ new 𝐶 (𝑡 ) ⇒
new 𝐶 (𝑣) ;𝑆1

B-Obj

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣′ ;𝑆 ′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′

𝐸;𝑆 ;𝐶𝑇 ⊢ new 𝐶 (𝑡 ) ⇐ new 𝐶 ′ (𝑣′ ) ;𝑆 ′
1
{

𝐸′
;𝑆 ′

;𝐶𝑇 ′ ⊢ new 𝐶 ′ (𝑡 ′ )

F-Proj

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ new 𝐶 (𝑣) ;𝑆1
𝑛 = findField 𝐶𝑇 𝐶 𝑓𝑛 𝑣𝑛 = nth 𝑛 𝑣

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 .𝑓𝑛 ⇒ 𝑣𝑛 ;𝑆1

B-Proj

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ new 𝐶 (𝑣) ;𝑆1 𝑛 = findField 𝐶𝑇 𝐶 𝑓𝑛

𝑣′ = updateNth 𝑛 𝑣′𝑛 𝑣 𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ new 𝐶 (𝑣′ ) ;𝑆 ′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 .𝑓𝑛 ⇐ 𝑣′𝑛 ;𝑆
′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′ .𝑓𝑛

F-Invk

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇒ new 𝐶 (𝑣1 ) ;𝑆1 𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇒ 𝑣2;𝑆2

(𝑥, 𝑡𝑚 ) = mbody 𝐶𝑇 𝐶 𝑚 𝐸, 𝑥 ↦→ 𝑣2, 𝑡ℎ𝑖𝑠 ↦→ new 𝐶 (𝑣1 ) ;𝑆2;𝐶𝑇 ⊢ 𝑡𝑚 ⇒ 𝑣;𝑆3

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 .𝑚 (𝑡2 ) ⇒ 𝑣;𝑆3

B-Invk

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇒ new 𝐶 (𝑣1 ) ;𝑆1 𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇒ 𝑣2;𝑆2 (𝑥, 𝑡𝑚 ) = mbody 𝐶𝑇 𝐶 𝑚

𝐸, 𝑥 ↦→ 𝑣2, 𝑡ℎ𝑖𝑠 ↦→ new 𝐶 (𝑣1 ) ;𝑆2;𝐶𝑇 ⊢ 𝑡𝑚 ⇐ 𝑣′ ;𝑆 ′
3
{ 𝐸′, 𝑥 ↦→ 𝑣′

2
, 𝑡ℎ𝑖𝑠 ↦→ new 𝐶 ′ (𝑣′

1
) ;𝑆 ′

2
;𝐶𝑇 ′ ⊢ 𝑡 ′𝑚

subclass = class 𝐶 ′
𝑠𝑢𝑏

extends 𝐶 ′ {𝑚 (𝑥 ) {return 𝑡 ′𝑚 ; }} 𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇐ 𝑣′
2
;𝑆 ′

2
{ 𝐸2;𝑆

′
1
;𝐶𝑇2 ⊢ 𝑡 ′2

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇐ new 𝐶 ′
𝑠𝑢𝑏

(𝑣′
1
) ;𝑆 ′

1
{ 𝐸1;𝑆

′
;𝐶𝑇1 ⊢ 𝑡 ′1 𝐶𝑇𝑀 = {subclass} ∪𝐶𝑇1 ∪𝐶𝑇2 ∪𝐶𝑇 ′ 𝐸𝑀 = 𝐸1

𝑡1⊕𝑡2
𝐸
𝐸2

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 .𝑚 (𝑡2 ) ⇐ 𝑣′ ;𝑆 ′
3
{ 𝐸𝑀 ;𝑆 ′

;𝐶𝑇𝑀 ⊢ 𝑡 ′
1
.𝑚 (𝑡 ′

2
)

Fig. 12. Bidirectional Evaluation Semantics for Objects

We adopt the same classification of backward evaluation rules in LITTLELEO [Mayer et al. 2018]—

replacement rules overwrite terms in the program, while propagation rules propagate the altered

output into sub-terms.

Replacement Rules. There are two rules for rewriting terms in the program, which are also

responsible for propagating the updates of the global state. The rule B-Const states that when the

output 𝑐 ; 𝑆 is altered to 𝑐′; 𝑆 ′, the term 𝑐 is updated to 𝑐′, and the state 𝑆 is updated to 𝑆 ′, respectively,
while the environment 𝐸 and class table 𝐶𝑇 remain unchanged.

The rule B-Obj is new to bidirectional programming, which is dedicated to object-oriented

programming and extends what developers can manipulate on the output—not only values but also

types of objects. The rule B-Obj first pushes the altered output 𝑣 ′; 𝑆 ′
1
back to 𝑡 , producing an updated

parameter 𝑡 ′, as well as the updated environment 𝐸′, state 𝑆 ′, and class table 𝐶𝑇 ′
. One interesting

point is that we allow modifying the class name of object creation, i.e., from 𝐶 to 𝐶′
. Combining

the updated class 𝐶′
with the parameter 𝑡 ′, we get a new object creation term new 𝐶′ (𝑡 ′).

In practice, updating class names of object creations facilitates the direct manipulation of com-

ponent types in the output, such as changing a menu to a menu item in Section 2. Note that if the

class 𝐶 is updated to its sub-classes (with default values for the missing fields), then the program

execution must not encounter problems because sub-class objects can call super-class methods. On

the contrary, if the class 𝐶 is updated to its super-class, the local fields of 𝐶 must be removed, and
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the program execution will fail when invoking the local methods of 𝐶 .

Propagation Rules. Propagation rules allow changes to values at the leaves of the program

to flow throughout the program. We follow the core formulation of updating variables and variable

binding forms in LITTLELEO [Mayer et al. 2018], while our innovation is the backward semantics

for field accesses and method invocations. To simplify the presentation, the evaluation and update

rules for method invocations assume only variable patterns rather than arbitrary ones, as in our

implementation.

Variables. When the output is altered to 𝑣 ′; 𝑆 ′, the rule B-Var updates the environment 𝐸 to 𝐸′,
where 𝑥 is bound to the new value 𝑣 ′, and the rest remains unchanged. Then, the rule B-Var keeps

the term 𝑥 unchanged while updating the state 𝑆 to 𝑆 ′. Note that 𝐸 (𝑥) represents the value bound
to the key 𝑥 in the dictionary 𝐸 and [𝑥 ↦→ 𝑣 ′]𝐸 represents replacing the binding of 𝑥 with 𝑣 ′.

Field Accesses. For simplicity, we represent the field sequence in object creations by a list. Like

TAPL [Pierce 2002], BiFJ initializes the inherited fields and the fields declared in the current class

in turn. In the rule F-Proj, the auxiliary function findField first lists all the field names declared in

𝐶’s super-classes and itself and then finds the index of the field 𝑓𝑛 in that field list. The auxiliary

function nth returns the n-th element of the field list 𝑣 , which corresponds to the field 𝑓𝑛 .

In the rule B-Proj, the first premise evaluates the term 𝑡 to an object creation new 𝐶 (𝑣), where 𝑣
is a field list. Then, the auxiliary function updateNth replaces the n-th element of 𝑣 with 𝑣 ′𝑛 and

returns 𝑣 ′. Finally, B-Proj pushes the altered output new 𝐶 (𝑣 ′); 𝑆 ′
1
back to the term 𝑡 , resulting in

an updated term 𝑡 ′ and the updated context (short for the combination of the environment 𝐸′, the
state 𝑆 ′, and the class table 𝐶𝑇 ′

).

Method Invocations. As shown in Table 1, the rule B-Invk describes the backward evaluation

semantics for method invocations that can be divided into five intuitive steps. 𝑃1 − 𝑃9 represent
nine premises of B-Invk that are explained explicitly in the second “Detail” column. We take the

example Case A in Section 2.2.1 to illustrate B-Invk in the third “Example” column. (Due to space,

we only show crucial parts and omit the rest.)

Although B-Invk appears complicated, the core idea is straightforward. Similar to the rule in

LITTLELEO [Mayer et al. 2018] that updates function calls, B-Invk updates the method body first (𝑃4)

and then updates the parameters (𝑃6) and receiver (𝑃7).

Nevertheless, a significant difference from LITTLELEO [Mayer et al. 2018] is that B-Invk also updates

the class table. Our updating strategy for class tables is called subclassing. It creates a sub-class
that extends the receiver’s class with the overriding method (𝑃5). Then subclassing appends the

new sub-class to the class table (𝑃8). We decide to adopt this simple strategy because we hope that

the backward semantics of BiFJ is clean and easy to reason. This strategy will yield many new

sub-classes in the class table, which may be redundant. Consequently, we must refine the class

table to reduce the class redundancy by Class Structure Refactoring (see Section 3.2.2).

In 𝑃9, we adopt the merge operation “
𝑡1⊕𝐸

𝑡2
” that is defined in LITTLELEO [Mayer et al. 2018] to

merge two structurally equivalent environments 𝐸1 and 𝐸2. There are two implementations for the

merge operation: “
𝑡1⊕𝑡2

” is the conservative two-way merge operator where 𝑡1 and 𝑡2 were updated
when 𝐸1 and 𝐸2 were produced; “⊕𝐸” is the optimistic three-way merge operator where 𝐸 is the

original environment. We take Example 3.1 to give an intuitive explanation for two operators

(see LITTLELEO [Mayer et al. 2018] for detailed definitions). The two-way merge compares the two

values and fails as soon as it encounters an inconsistent update; the three-way merge compares the

two values with the original one and heuristically prefers the value that differs from the original.
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Table 1. Detail Explanation of B-Invk with An Example

Step Detail Example

Forward

Evalua-

tions of 𝑡1
and 𝑡2

𝑃1 evaluates the term 𝑡1 to new 𝐶 (𝑣1); 𝑆1. ... ⊢ newFile ⇒ new Menu(...) ; ...

𝑃2 evaluates the term 𝑡2 to 𝑣2; 𝑆2. ... ⊢ “New File” ⇒ “New File”; ...

𝑃3 uses the auxiliary function mbody to find the formal pa-

rameter 𝑥 and the method body 𝑡𝑚 of𝑚 in 𝐶𝑇 , which may

come from the definition of class 𝐶 itself or its super-classes.

(𝑡, 𝑡 + “...”) =
mbody 𝐶𝑇 Menu setTitle

Method

Body

Updating

𝑃4 pushes the altered output 𝑣 ′; 𝑆 ′
3
back to 𝑡𝑚 under the en-

vironment 𝐸, 𝑥 ↦→ 𝑣2, 𝑡ℎ𝑖𝑠 ↦→ new 𝐶 (𝑣1), the state 𝑆2, and
the class table 𝐶𝑇 , producing 𝑡 ′𝑚 as well as the environment

𝐸′, 𝑥 ↦→ 𝑣 ′
2
, 𝑡ℎ𝑖𝑠 ↦→ new 𝐶′ (𝑣 ′

1
), an updated state 𝑆 ′

2
, and an

updated class table 𝐶𝑇 ′
.

{ ..., 𝑡 ↦→ “New File”,

this ↦→ new Menu(...) }; ...
⊢ 𝑡 + “...” ⇐ “New File >> ”; ...

{ ... ⊢ 𝑡 + “ >> ”

Subclassing

𝑃5 creates a new class 𝐶′
𝑠𝑢𝑏

extending the class 𝐶′
and over-

riding the method𝑚 defined by 𝑡 ′𝑚 . Note that the class name

𝐶′
𝑠𝑢𝑏

is unique and does not conflict with other class names.

subclass =

class Menu0 extends Menu {
setTitle (𝑡 ) {return 𝑡 + “ >> ”; }}

𝑡1 and 𝑡2

Updating

𝑃6 pushes the altered output 𝑣 ′
2
; 𝑆 ′

2
back to 𝑡2, producing an

updated term 𝑡 ′
2
as well as 𝐸2, 𝑆

′
1
, and 𝐶𝑇2.

... ⊢ “New File” ⇐ “New File”; ...

{ ... ⊢ “New File”

𝑃7 pushes the altered output value new 𝐶′
𝑠𝑢𝑏

(𝑣 ′
1
) that com-

bines 𝑣 ′
1
from 𝑃4 and 𝐶′

𝑠𝑢𝑏
from 𝑃5, as well as the updated

state 𝑆 ′
1
, back to 𝑡1, resulting in an updated term 𝑡 ′

1
with 𝐸1,

𝑆 ′ and 𝐶𝑇1. Putting these pieces together, the final updated
term is 𝑡 ′

1
.𝑚(𝑡 ′

2
).

... ⊢ newFile
⇐ new Menu0 (...) ; ...
{ ... ⊢ newFile

Class

Table and

Env

Merge

𝑃8 unions {subclass},𝐶𝑇1,𝐶𝑇2 with𝐶𝑇 ′
. In the backward eval-

uation, we simplify the updated class tables to only record

the newly added classes and union multiple class tables di-

rectly because subclassing ensures the newly added classes

are different.

𝐶𝑇𝑀 = {𝑠𝑢𝑏𝑐𝑙𝑎𝑠𝑠 } ∪ ∅ ∪ ∅ ∪ ∅
= {subclass}

𝑃9 reconciles environments 𝐸1 and 𝐸2 with the original 𝐸.

The symbol “
𝑡1⊕𝐸𝑡2” is the merge operator of environments

discussed later.

𝐸𝑀 = 𝐸 𝑡1⊕𝐸
𝑡2𝐸 = 𝐸

We adopt the three-way merge for implementation because it is more powerful and can cover all

situations where the two-way merge can do.

Example 3.1. Consider the program let x=1 in [x,x]. If the output value is altered to [2, 3],
the two-way merge fails because the two occurrences of the same source constant 1 are not updated

consistently. However, in that case, the three-way merge may choose 2 when comparing 2 and 3

with the original 1. Therefore, the updated program is let x=2 in [x,x] using the three-way

merge.

One more issue to note is that when an object creation is updated by two newly added sub-class

objects generated by subclassing, the two sub-class definitions need to be merged in the class table,

as shown in Example 3.2. Specifically, methods with different names can be merged directly, while

methods with the same name but different definitions needs to be merged using the three-way

merge. In our implementation, we merge the definitions of the two sub-classes when a variable is

updated as objects of two different sub-classes in the environment merge (𝑃9).
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Fig. 13. An Example for Merging Sub-class Definitions

Example 3.2. Consider the program in Figure 13(a). The class Button owns two methods, setDe-
faultColor and setDefaultText. Suppose that the color of the output button is changed to “Green”

and the text is changed to “Click On”. There are two steps in the backward updating: (1) Two

new sub-classes Button1 and Button2 of Button are temporarily created, as shown in Figure 13(d);

(2) Another new sub-class Button’ of Button is created to merge Button1 and Button2, and btn is

updated to the class Button’. The final updated program is shown in Figure 13(b).

We explain below why we merge the two sub-classes instead of replacing the receivers of the two

calls with objects from two different sub-classes. For one thing, using Example 3.2 as an example,

due to the imperative feature of our language, changing the receiver of the call to an object of a

newly created sub-class would make the updated program unreasonable, as shown in Figure 13(c).

For another, to reduce the ambiguity of program updates, we update the constants and classes of

objects in the program only, as mentioned in the Replacement Rules section.

3.2.2 Class Structure Refactoring. For the problem of class redundancy caused by subclassing in

backward evaluation, we adopt a heuristic strategy, Class Structure Refactoring, to optimize the

class table. Class Structure Refactoring aims to minimize the class table changes as much as possible

without changing the program behavior. The optimized class table is better for developers in terms

of comprehensibility because the number of newly added classes and new overriding methods is

reduced.

Intuitively, Class Structure Refactoring is a process that combines two popular code refactoring

operations, i.e., Pull Up Method to move methods from sub-classes up to the super-class and Collapse
Hierarchy to remove empty sub-classes. Of course, we adapt these refactoring operations to the

scenario of bidirectional evaluation: for Pull Up Method, we move only the updated methods in the

backward evaluation, i.e., the methods that are overridden in the newly added classes; for Collapse
Hierarchy, we delete the empty classes that are newly added to the class table by the backward

evaluation (see B-Invk) and change the class name of the corresponding object creations in the

program to their parent classes. It is worth noting that Class Structure Refactoring does not delete

originally existed classes, which is an important prerequisite for the correctness (Theorem 3.3) to

hold.

Algorithm. The formal definition of Class Structure Refactoring is given in Figure 14. We model the

class table as a class tree 𝑐 : [𝑇1, . . . ,𝑇𝑘 ] built according to class inheritance relationships, where 𝑐

is the root class and [𝑇1, . . . ,𝑇𝑘 ] is the sequence of sub-trees. Note that 𝑐 denotes a class definition
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𝑐 : ∅ ⊳ 𝑡 ⇑ 𝑐 : ∅

𝑇1 ⊳ 𝑡 ⇑ 𝑐1 : [𝑇 ′
11
, . . . ] . . . 𝑇𝑘 ⊳ 𝑡 ⇑ 𝑐𝑘 : [𝑇 ′

𝑘1
, . . . ]

𝑀 = {𝑚𝑡𝑖 |∃𝑖 . 𝑐𝑖 .𝑚
↑
𝑡𝑖
, 𝑐 ∤𝑚 𝑡, ∀𝑗 ∈ [1, 𝑘] . 𝑐 𝑗 .𝑚↑

𝑡𝑖
∨ (𝑐 𝑗 : [𝑇 ′

𝑗1
, . . . ]) |=𝑚 𝑡}

𝑐′ = 𝑐 ⊕ 𝑀 𝑐′
1
= 𝑐1 ⊖ 𝑀 . . . 𝑐′

𝑘
= 𝑐𝑘 ⊖ 𝑀

𝑐 : [𝑇1, . . . ,𝑇𝑘 ] ⊳ 𝑡 ⇑ 𝑐′ : [(𝑐′1 : [𝑇
′
11
, . . . ]), . . . , (𝑐′

𝑘
: [𝑇 ′

𝑘1
, . . . ])]

Fig. 14. Class Structure Refactoring: 𝑇 ⊳ 𝑡 ⇑ 𝑇 ′

𝑐.𝑚 ∨ 𝑐 ∤𝑚 𝑡

𝑐 : ∅ |=𝑚 𝑡

𝑐 .𝑚 ∨ (𝑐 ∤𝑚 𝑡 ∧𝑇1 |=𝑚 𝑡 ∧ · · · ∧𝑇𝑘 |=𝑚 𝑡)

𝑐 : [𝑇1, ...,𝑇𝑘 ] |=𝑚 𝑡

Fig. 15. 𝑇 ’s Calls to𝑚 in the Forward Evaluation of 𝑡 are Independent of 𝑇 ’s Ancestors: 𝑇 |=𝑚 𝑡

that contains a class name 𝐶 and method definitions. We use “𝑐.𝑚” to access the definition of the

method𝑚. The symbol “⇑” is the refactoring operator that takes two arguments, a class tree 𝑇 and

a term 𝑡 that T is defined for, and returns the refactored class tree T’. As shown in Figure 14, the

base case is that a single class without children remains unchanged after refactoring.

For a class tree 𝑐 : [𝑇1, . . .𝑇𝑘 ], the first step is to refactor sub-trees 𝑇1, . . . ,𝑇𝑘 and obtain 𝑐1 :

[𝑇 ′
11
, . . . ], . . . , 𝑐𝑘 : [𝑇 ′

𝑘1
, . . . ]. The second step is to find all methods 𝑀 in [𝑐1, · · · , 𝑐𝑘 ] that can be

moved to the parent class 𝑐 . The third step is to add methods in M to the class c indicated by the

symbol “⊕” and remove methods in M from [𝑐1, ..., 𝑐𝑘 ] indicated by the symbol “⊖”.
There are three conditions that need to be satisfied when moving the method𝑚𝑡𝑖 from sub-classes

to their parent class. The first condition ∃𝑖 . 𝑐𝑖 .𝑚↑
𝑡𝑖
states that there is at least one sub-class 𝑐𝑖 having

the method𝑚 with the body 𝑡𝑖 that can be moved. Note that𝑚𝑡𝑖 represents the signature of the

method is𝑚, the method body is 𝑡𝑖 , and the symbol “↑” at the top-right corner represents that
the method is obtained by subclassing and does not originally exist. The second condition 𝑐 ∤𝑚 𝑡

states that, in the forward evaluation of 𝑡 , the objects of class 𝑐 do not call the method𝑚. The

third condition ∀𝑗 ∈ [1, 𝑘] . 𝑐 𝑗 .𝑚↑
𝑡𝑖
∨ (𝑐 𝑗 : [𝑇 ′

𝑗1, . . . ]) |=𝑚 𝑡 states that for all sub-classes [𝑐1, · · · , 𝑐𝑘 ],
either the class 𝑐 𝑗 has the method𝑚 with the same body as 𝑡𝑖 that can be moved or, in the forward

evaluation of 𝑡 , the calls of the sub-tree rooted as 𝑐 𝑗 to the method𝑚 is independent of its ancestors,

represented as (𝑐 𝑗 : [𝑇 ′
𝑗1, . . . ]) |=𝑚 𝑡 .

The judgment𝑇 |=𝑚 𝑡 is defined in Figure 15. If the class 𝑐 initially has the unmovable method m

(i.e., 𝑐.𝑚) or 𝑐 ∤𝑚 𝑡 , then 𝑐 : ∅ |=𝑚 𝑡 holds. For a class tree 𝑐 : [𝑇1, · · · ,𝑇𝑘 ] whose depth is at least 1,

the premise of this judgment is either 𝑐.𝑚 or 𝑐 ∤𝑚 𝑡 ∨𝑇1 |=𝑚 𝑡∧, · · · ,∧𝑇𝑘 |=𝑚 𝑡 .

Correctness. We now present the correctness that Class Structure Refactoring does not change the

execution result of the program, as described in Theorem 3.3.

Theorem 3.3. If 𝑇 ⊳ 𝑡 ⇑ 𝑇 ′, 𝑇 ⊢ 𝑡 ⇒ 𝑣1, 𝑇
′ ⊢ 𝑡 ⇒ 𝑣2, then 𝑣1 = 𝑣2.

If the class table 𝑇 is refactored to 𝑇 ′
under the term 𝑡 , 𝑡 evaluates to 𝑣1 under the class table

𝑇 , and 𝑡 evaluates to 𝑣2 under the refactored class table 𝑇 ′
, then 𝑣1 equals 𝑣2. For simplicity, we

omit environments and states in the forward evaluation and use the original term 𝑡 instead of the

term that replaces the class names deleted from refactoring with the ones of their parent classes.

This is because a class that does not have any new methods or fields is equivalent to its parent

class. Detailed proof is given in Appendix A. Note that we do not discuss the termination of Class
Structure Refactoring because, in the domain of bidirectional evaluation, backward evaluation only

considers terminated programs.
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F-Ref
𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑣;𝑆1 𝑙 ∉ 𝑑𝑜𝑚 (𝑆1 )

𝐸;𝑆 ;𝐶𝑇 ⊢ ref 𝑡 ⇒ 𝑙 ;𝑆1 ∪ {𝑙 ↦→ 𝑣}
B-Ref

𝑣′ = 𝑆 ′′
1
(𝑙 ) 𝑆 ′

1
= 𝑆 ′′

1
/{𝑙 }

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣′;𝑆 ′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′

𝐸;𝑆 ;𝐶𝑇 ⊢ ref 𝑡 ⇐ 𝑙 ;𝑆 ′′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ ref 𝑡 ′

F-Deref
𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑙 ;𝑆1 𝑣 = 𝑆1 (𝑙 )

𝐸;𝑆 ;𝐶𝑇 ⊢!𝑡 ⇒ 𝑣;𝑆1

B-Deref

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑙 ;𝑆1 𝑆 ′
1
= [𝑙 ↦→ 𝑣′ ⊕𝑆1 (𝑙 ) 𝑆

′′
1
(𝑙 ) ]𝑆 ′′

1

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑙 ;𝑆 ′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢ 𝑡 ′

𝐸;𝑆 ;𝐶𝑇 ⊢!𝑡 ⇐ 𝑣′;𝑆 ′′
1
{ 𝐸′

;𝑆 ′
;𝐶𝑇 ′ ⊢!𝑡 ′

F-Assign
𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇒ 𝑙 ;𝑆1 𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇒ 𝑣2;𝑆2

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 := 𝑡2 ⇒ 𝑢𝑛𝑖𝑡 ; [𝑙 ↦→ 𝑣2 ]𝑆2

B-Assign

𝑣′
2
= 𝑆 ′′

2
(𝑙 ) 𝑆 ′

2
= [𝑙 ↦→ 𝑆2 (𝑙 ) ]𝑆 ′′

2

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇒ 𝑙 ;𝑆1 𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇐ 𝑣′
2
;𝑆 ′

2
{ 𝐸2;𝑆

′
1
;𝐶𝑇2 ⊢ 𝑡 ′2 𝐶𝑇𝑀 = 𝐶𝑇1 ∪𝐶𝑇2

𝐸;𝑆1;𝐶𝑇 ⊢ 𝑡2 ⇒ 𝑣2;𝑆2 𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 ⇐ 𝑙 ;𝑆 ′
1
{ 𝐸1;𝑆

′
;𝐶𝑇1 ⊢ 𝑡 ′1 𝐸𝑀 = 𝐸1

𝑡1⊕𝐸
𝑡2𝐸2

𝐸;𝑆 ;𝐶𝑇 ⊢ 𝑡1 := 𝑡2 ⇐ 𝑢𝑛𝑖𝑡 ;𝑆 ′′
2
{ 𝐸𝑀 ;𝑆 ′

;𝐶𝑇𝑀 ⊢ 𝑡 ′
1
:= 𝑡 ′

2

Fig. 16. Bidirectional Evaluation Semantics for Referencs

3.3 Bidirectional Semantics: References
This section presents the bidirectional semantics’ design principles and concrete evaluation rules

for references, as shown in Figure 16. The description of forward and backward judgments is

explained in Section 3.2.

3.3.1 Design Principles. Unlike functional environments, the forward evaluator’s access to the

state (that records values pointed by references) is serial and ordered. That is precisely why the

backward evaluation should be in the exact opposite order as the forward evaluation, and the state

can be handled linearly without merging. The opposite order of 𝑃1, 𝑃2, and 𝑃6, 𝑃7 in Table 1 can

illustrate that point.

In addition, each reference assignment overwrites the effect of the previous one. For example,

the program a:=1;a:=2;!a outputs 2 because the second assignment a:=2 overwrites the effect
of a:=1. Assignments executed early in the forward evaluation are updated later in the backward

evaluation, and assignments executed later in the forward evaluation are updated early. Therefore,

in the backward evaluation, we need to roll back the reference value to the one computed by the

early assignment after updating the late assignment. In the above example, after updating 𝑎 := 2,

we need to roll back the value of 𝑎 to 1 (computed by 𝑎 := 1). The concrete semantics is described

in B-Assign.

In summary, each backward evaluation rule for updating references 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣 ′; 𝑆 ′
1
{

𝐸′; 𝑆 ′;𝐶𝑇 ′ ⊢ 𝑡 ′ should guarantee that: (1) the updated state 𝑆 ′ is structurally equivalent to 𝑆 , i.e.,

both have the same domain; (2) the effects caused by the term 𝑡 in the updated state 𝑆 ′
1
should be

rolled back while ensuring the other updates are forwarded to the rest backward evaluation; (3)

when forward evaluating the term 𝑡 ′, the state 𝑆 ′ must be re-evaluated to the modified state 𝑆 ′
1

after the backward evaluation (i.e., PUTGET property discussed in Section 3.4). Note that although

references are an important feature of object-oriented programs, their bidirectional semantics is

independent of the object part, so we omit the description of class tables in this section.

3.3.2 Reference Creations. The rule B-Ref first obtains a value 𝑣 ′ from the updated state 𝑆 ′′
1
ac-

cording to the location 𝑙 . Note that the term 𝑡 ′ should evaluate to the value 𝑣 ′ by F-Ref. Compared
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Table 2. Detail Explanation of B-Assign with An Example

Step Detail Example

Forward

Evalua-

tions of 𝑡1
and 𝑡2

𝑃3 evaluates the term 𝑡1 to 𝑙 ; 𝑆1.
{𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0}
⊢ 𝑎 ⇒ 𝑙 ; {𝑙 ↦→ 0}

𝑃6 evaluates the term 𝑡2 to 𝑣2; 𝑆2.
{𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0}
⊢!𝑎 + 1 ⇒ 1; {𝑙 ↦→ 0}

State

Rollback

𝑃1 obtains 𝑣
′
2
from 𝑆 ′′

2
according to the location 𝑙 . 2 = {𝑙 ↦→ 2} (𝑙 )

𝑃2 restores the value of location 𝑙 in 𝑆
′′
2
to 𝑆2 (𝑙).

{𝑙 ↦→ 0} =
[𝑙 ↦→ {𝑙 ↦→ 0} (𝑙 ) ] {𝑙 ↦→ 2}

𝑡1 and 𝑡2

Updating

𝑃4 pushes 𝑣 ′
2
; 𝑆 ′

2
back to the term 𝑡2 under 𝐸, 𝐶𝑇 ,

and 𝑆1 obtained in 𝑃3, producing the updated term

𝑡 ′
2
and the updated context (i.e., 𝐸2, 𝑆

′
1
, and 𝐶𝑇2).

{𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0} ⊢!𝑎 + 1

⇐ 2; {𝑙 ↦→ 0}
{ {𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0} ⊢!𝑎 + 2

𝑃7 pushes 𝑙 ; 𝑆
′
1
back to the term 𝑡1, producing the

updated term 𝑡 ′
1
and the updated context (i.e., 𝐸1,

𝑆 ′, and𝐶𝑇1). Putting these pieces together, the final
updated term is 𝑡 ′

1
:= 𝑡 ′

2
.

{𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0} ⊢ 𝑎
⇐ 𝑙 ; {𝑙 ↦→ 0}
{ {𝑎 ↦→ 𝑙 }; {𝑙 ↦→ 0} ⊢ 𝑎

Class

Table and

Env Merge

𝑃5 unions 𝐶𝑇1 with 𝐶𝑇2, similar to B-Invk. Omitted.

𝑃8 reconciles environments 𝐸1 and 𝐸2 with the orig-

inal 𝐸.

{𝑎 ↦→ 𝑙 } =
{𝑎 ↦→ 𝑙 }𝑡1⊕𝐸

𝑡2 {𝑎 ↦→ 𝑙 }

with the structure of 𝑆1, there is one more location 𝑙 in 𝑆 ′′
1
, which should be removed to keep the

same as 𝑆1. In the second premise, the notation “𝐷/𝐾” denotes the removal of elements from a

dictionary 𝐷 that belong to the domain 𝐾 . Then, B-Ref pushes the altered result 𝑣 ′; 𝑆 ′
1
back to the

term 𝑡 , producing the updated term 𝑡 ′ and the updated context (i.e., 𝐸′, 𝑆 ′, and 𝐶𝑇 ′
). The new term

is a reference creation of 𝑡 ′, i.e., ref 𝑡 ′.

Example 3.4. Consider the term ref 1 under an empty state, which evaluates to a location 𝑙

with the state {𝑙 ↦→ 1}. Since we do not allow changes to the location, 𝑙 must keep unchanged,

and the state may be modified to {𝑙 ↦→ 2}. B-Ref pushes the altered value 2 pointed by 𝑙 as well as

the empty state ∅ (i.e., 𝑆 ′
1
) back to the term 1, producing an updated term 2 by B-Const. The final

updated program is ref 2 with the empty state 𝑆 ′. □

3.3.3 Dereferences. The rule B-DeRef first evaluates the term 𝑡 to a location value 𝑙 with the state

𝑆1. The second premise then replaces the element pointed by the location 𝑙 with the merged value

𝑣 ′ ⊕𝑆1 (𝑙 ) 𝑆
′′
1
(𝑙) in the updated state 𝑆 ′′

1
, producing the updated state 𝑆 ′

1
. The third premise pushes

the altered output 𝑙 ; 𝑆 ′
1
back to the term 𝑡 , producing the updated term 𝑡 ′ and the updated context

(i.e., 𝐸′, 𝑆 ′, and 𝐶𝑇 ′
). The new term is a dereference of 𝑡 ′, i.e., !𝑡 ′.

Because we allow both the value and the state in the output to be modified, the operator “⊕𝑆1 (𝑙 )”
is used to merge the two values 𝑣 ′ and 𝑆 ′′

1
(𝑙) that may be updated. Similar to environment merge,

the operator ⊕𝑣 has two variations: one is the two-way value merge that updating succeeds if the

two values are consistent or fails if not; the other is the three-way merge that recursively compare

the two values with the original value and choose the different one.

Example 3.5. Consider the term !𝑥 under an environment {𝑥 ↦→ 𝑙} and a state {𝑙 ↦→ 1}, which
evaluates to 1; {𝑙 ↦→ 1}. Suppose the output is altered to 2; {𝑙 ↦→ 2}. The second premise replaces 1
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pointed by 𝑙 with 2 in the state. The third premise pushes the altered output 𝑙 ; {𝑙 ↦→ 2} back to 𝑥 ,

resulting in the updated state {𝑙 ↦→ 2}, as well as the unchanged term and environment. □

3.3.4 Assignments. The backward semantics of B-Assign is split into four parts, as shown in

Table 2. 𝑃1 − 𝑃8 are eight premises of B-Assign (from top to bottom, left to right). We take an

example to demonstrate each premise shown in the third “Example” column. Consider the term

a:=!a+1 under the environment {𝑎 ↦→ 𝑙} and the state {𝑙 ↦→ 0}. Suppose the output is altered to

unit; {𝑙 ↦→ 2}. Updating semantics for additions in 𝑃4 chooses to update the right operand, which

is user-customizable in the implementation.

The effect rollback in 𝑃2 is necessary. Suppose that we do not roll back the value of 𝑙 in 𝑝2, then

the final updated program is a:=!a+2 under the environment {𝑎 ↦→ 𝑙} and the state {𝑙 ↦→ 2}, which
evaluates to unit; {𝑙 ↦→ 4}.

3.4 Correctness
The forward evaluation and the backward evaluation form a lens [Foster et al. 2007] that maintains

consistency between an object-oriented program (source) and the output (view). To ensure the well-

behavedness of our system, the bidirectional evaluation should satisfy round-tripping properties,

i.e., GETPUT and PUTGET [Foster et al. 2007], which are defined as follows.

Theorem 3.6 (GETPUT). If 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇒ 𝑣 ; 𝑆1, then 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣 ; 𝑆1 { 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 .

Theorem 3.7 (PUTGET). If 𝐸; 𝑆 ;𝐶𝑇 ⊢ 𝑡 ⇐ 𝑣 ′; 𝑆 ′
1
{ 𝐸′; 𝑆 ′;𝐶𝑇 ′ ⊢ 𝑡 ′, then 𝐸′; 𝑆 ′;𝐶𝑇 ′ ⊢ 𝑡 ′ ⇒ 𝑣 ′; 𝑆 ′

1
.

Intuitively, GETPUT states that if we get an output 𝑜 from a program 𝑝 and immediately push 𝑜

(with no modifications) back to 𝑝 , we must get back exactly 𝑝 . PUTGET, on the other hand, demands

that the backward evaluation must capture all of the information contained in the output: if pushing

an output 𝑜 back to a program 𝑝 yields an updated program 𝑝′, then the output obtained from 𝑝′ is
exactly 𝑜 .

We can prove that the bidirectional semantics of BiFJ satisfy GETPUT and PUTGET if the developer

modifies the output consistently. If the output is modified inconsistently, like in Example 3.1, this

means that the modified output exceeds the program’s output range, where only the constants

are allowed to be modified. Therefore, in the correctness proof, we only consider that the output

is modified consistently like LITTLELEO [Mayer et al. 2018], which means that using the two-way

merge always succeeds in the backward evaluation.

The formal proof of satisfaction of GETPUT and PUTGET using the traditional two-way merge is

available in the anonymous code library. We use bidirectional evaluation rules of assignments as

an example to demonstrate the informal proof in Appendix B and Appendix C. It is added that, in

practice, we use the three-way merge to handle the possible inconsistent output to avoid updating

failures (mentioned in Section 3.2.1). However, using the three-way merge may cause PUTGET to be

unsatisfied because it loses output information.

4 IMPLEMENTATION
To validate the practicality of our approach to bidirectional object-oriented programming, we

implemented a prototype programming environment called BiOOP to support our language BiFJ for

developing HTML webpages, which is available at https://github.com/xingzhang-pku/BiOOP. We

contributed nearly 9000 lines of Elm code in our implementation.

4.1 Framework
The framework of BiOOP is shown in Figure 4. BiOOP adopts a two-stage bidirectionalization: one

is between the object-oriented program and the object structure; the other is between the object
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Fig. 17. The BX between Objects and HTML

structure and the HTML code. The first bidirectional transformation (BX for short) is the core

of our tool discussed in Section 3. The second one is shown in Figure 17. Note that the second

mapping (called O-bx-H) is not difficult and has been studied widely; many MVC frameworks (e.g.,

Vue, Angular, and React) can be directly used.

Our key insight is that updating the object structure through the direct manipulation of outputs

requires two-stage bidirectionalization. Assume that the source object-oriented program is evaluated

to the HTML code directly and developers can make arbitrary modifications to the HTML code.

Although it is very flexible, a practical problem arises: because of the lack of correspondence between

the HTML code and the object structure in the program, the developers’ arbitrary modifications

to the output may not be propagated to the source program due to the lack of restrictions. For

example, developers may delete a “button” element even though it may be part of an object in the

program or even delete the “id” attribute of an element that could be an object field. To handle this

problem, we limit the developer’s modification of the HTML code by translating the HTML code

into an object structure before updating the source program.

4.2 BX between Objects and HTML
As shown in Figure 17, we give a simple implementation of O-bx-H to illustrate the connection

and difference with the existing MVC frameworks. O-bx-H contains two parts: a bidirectional

translation and an object structure controller.

The bidirectional translation is similar to sugaring and desugaring. The forward translation from

objects to HTML (Arrow 1) is briefly described as follows: we recursively match objects with object

templates to obtain the field bindings and then replace the variables in the HTML templates with

the binding values. The structure information of objects is added to the HTML during translation.

The backward translation from HTML to objects (Arrow 2) is similar to the forward translation,

which removes the structure information.

The object structure controller extracts the structure information from the GUI component that

is directly manipulated (Arrow 3) and modifies the object structure (such as modifying the types of

objects, adding an object, or deleting an object) obtained from the program (Arrow 4). Through

the forward translation from objects to HTML, developers can observe the structural modification

result in HTML.

As a whole, O-bx-H is a kind of MVC framework, but it differs a bit from existing ones. Take Vue

(a JavaScript framework) [You 2014] as an example, developers need to implement a listener for

each type of direct manipulation to reflect the updates on the HTML code to objects. O-bx-H adds

the structure information to the HTML code to automatically achieve the modifications to the

object structure.
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4.3 Implementation Details of O-bx-H
In the implementation of O-bx-H, there are three significant issues: (1) what kind of structural

information needs to be injected in HTML to enable the direct manipulations of the object structure;

(2) how to handle the information loss during the object-to-HTML translation and inconsistent

updates of the HTML code during the HTML-to-object translation; (3) how to handle references

among objects.

4.3.1 Object Structure Information. When translating an object into an HTML element, we must

embed a trace link back to the object (i.e., the object ID) and the information about what kinds of

manipulations are allowed into the HTML element. Regarding object IDs, we apply the depth-first

traversal to the objects, and the ID of an object is computed by combining the order in which the

object is visited with the object’s class name. Then, we store the object ID to the id attribute of the

corresponding HTML element.

To embed the kinds of allowed manipulations, we add the value “Object” to the class attribute of
the HTML element, which implies that the object type modification and the object deletion are

enabled for this element. Moreover, suppose the HTML element is translated from an object in an

object list. In that case, we also append the value “Add” to the class attribute, which means that the

object insertion after this element is enabled.

4.3.2 Translation Complements. The object-to-HTML translation may be an information-losing

transformation. For example, a field of an object may not be finally serialized to the HTML. On the

other hand, the same field may appear multiple times in HTML and is modified inconsistently. Our

solution to the above two issues is to keep an object-to-environment dictionary in the object-to-

HTML translation, representing the information discarded (i.e., complements [Foster et al. 2012]).
Besides, the three-way merge is used to combine multiple updates.

4.3.3 References in Objects. Developers usually set fields to reference types to facilitate class

methods to modify class fields. Therefore, we allow object fields in the object structure computed

by the program to be references. However, because the location values cannot be translated directly

into HTML, we replace them with the corresponding values in the global state. Therefore, when

developers modify the HTML fragment corresponding to the object pointed by a reference, they

actually modify the global state.

5 EVALUATIONS
The evaluation aims to analyze the expressiveness of our language (BiFJ) and the efficiency of our

tool (BiOOP) to produce a single HTML webpage, from the perspective of programming language

researchers in the context of object-oriented GUI programming. We mainly focus on the following

two research questions:

(1) RQ.1 Can BiFJ be used to develop typical GUI programs?

Rationale. BiFJ is intended to cover the scenario of GUI design. Hence, we must evaluate

whether BiFJ is expressive enough to specify typical GUI programs. In Section 5.1, we collect

11 benchmark programs of Java Swing [Eckstein et al. 1998], a classical GUI framework in

Java, and reproduce them using BiFJ in BiOOP.

(2) RQ.2 Can our tool efficiently respond to the developers’ edits by propagating the edits

bidirectionally within reasonable time cost when developing a single HTML webpage?

Rationale.We hope our tool can support interactive GUI design. If our tool cannot propagate

a developer’s edit efficiently, it may be put into practice. In Section 5.2, we conduct an

experiment to show that the efficiency of our tool is acceptable.
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Table 3. Benchmarks

ID Example LOC #Cls Depth of CT Width of CT #Obj

1 File Explorer 188 9 4 4 21

2 Source Getter 189 9 4 3 5

3 IP Finder 201 9 4 3 5

4 Number Puzzle 222 7 4 2 12

5 Picture Puzzle 238 7 4 2 13

6 Online Exam 245 10 5 2 54

7 Word Counter 274 12 4 3 9

8 Tic Tac Toe 287 8 4 2 13

9 NotePad 331 11 4 3 37

10 Calculator 371 11 5 3 29

11 Data Sync 631 22 5 10 97

LOC: Lines of code in BiFJ; #Cls: Numbers of classes; Depth of CT: Length of the

longest inheritance chain in the class table;Width of CT: Maximum number of

sub-classes of the same class; #Obj: Numbers of objects;

Fig. 18. Screenshots of Applications

5.1 Examples
To demonstrate the expressiveness of BiFJ, we reproduce 11 real-world Java Swing programs with

BiFJ. The first 10 programs are collected from a popular Java Swing tutorial available at JavaTpoint
3
;

the last program, called Data Sync, is the largest program collected from a GitHub project
4
with 790

stars. Note that we mainly focus on the GUI part and the class table definitions of these programs.

We use BiFJ to implement the 11 benchmark programs. The overall information on the imple-

mented programs is listed in Table 3. The “LOC” column shows the lines of BiFJ code of these

programs; the “#Cls” column shows the numbers of classes; the “Depth of CT” column shows the

lengths of the longest inheritance chain in the class table; the “Width of CT” column shows the

maximum numbers of sub-classes of the same class; the “#Obj” column shows the number of objects.

The largest program, i.e., Data Sync, has 631 lines of code and 97 objects. There are 7–12 classes in

the ten classic applications and 22 in Data Sync. All class tables have an inheritance chain whose

3
https://www.javatpoint.com/java-swing.

4
https://github.com/rememberber/WeSync.
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Table 4. Performance Experiment Results

ID #DMP Fwd F:Tot

Fastest Slowest Avg

Bwd CSR B:Tot Bwd CSR B:Tot Bwd CSR B:Tot

1 10 1 655 10 1 626 11 1 799 11 1 671±26
2 9 1 143 5 1 114 5 1 161 5 0 145±29
3 10 1 133 5 1 118 5 1 165 5 1 151±13
4 10 3 313 29 1 357 255 1 581 38 1 406±73
5 9 3 378 34 1 447 152 1 630 32 1 495±14
6 10 3 1394 38 1 1540 255 1 1946 197 1 1698±152
7 11 3 329 20 1 329 19 2 397 21 1 377±26
8 10 6 354 2017 2 2642 2030 2 2706 2013 2 2684±31
9 11 2 1008 12 0 912 12 1 1242 11 1 1124±117
10 9 3 1015 26 2 1147 677 4 1891 26 2 1189±22
11 10 2 3855 499 1 4533 514 2 4802 502 2 4679±162

#DMP: Numbers of Direct Manipulations; Fwd: Time to forward evaluation inmilliseconds for initial programs;

F:Tot: Total time between clicking the “Eval” button and getting the output; Bwd: Time to backward evaluation;

CSR: Time to class table lifting; B:Tot: Total time between clicking the “Update” button and getting the updated

program. The data 0 in the table is due to less than 0.5 before retaining integers.

length is at least 4, and the class JComponent in Data Sync has 10 sub-classes. Figure 18 illustrates

the screenshots of the 11 programs running in our tool. All the GUI programs work as expected.

Based on Table 3 and Figure 18, our answer to RQ.1 is yes—BiFJ has sufficient expressiveness
to develop GUI programs. Because we successfully apply BiFJ to the development of these bench-

mark programs, we think that BiFJ has covered the major features needed in object-oriented GUI

programming and can be adapted to handle real-world object-oriented programs.

5.2 Performance Experiment
We conduct a performance experiment to evaluate whether our tool is efficient enough to give the

developers quick feedback after directly manipulating the output. We instrument a timer mechanism

in our implementation and measure the execution time for the 11 benchmark programs. For each

program, we perform 9-11 direct manipulations on its execution output, documented in Appendix

D. The selection of direct manipulations covers value manipulations and structure manipulations

(including adding objects, deleting objects, and modifying types). We randomly select 1-5 test cases

for each kind of direct manipulation and randomly cover different types of objects. We repeat each

manipulation 10 times to calculate the average time cost. The experiment is conducted on a laptop

with Windows 10, Intel
®
Core

TM
i7-11800H @ 2.30GHz, and 16 GB RAM.

The results of the performance experiment are shown in Table 4. The “#DMP” column shows the

number of direct manipulations. The “Fwd” column shows the time costs of the forward evaluation.

The “F:Tot” column shows the total forward running time between clicking the “Eval” button

and getting the output, including the running time of the parsing, forward evaluation, translation

from objects to HTML, and printing. The “Bwd” column shows the running time of the backward

evaluation. The “B:Tot” column shows the total backward running time between clicking the

“Update” button and getting the updated program, including the running time of the parsing,

translation from HTML to objects, backward evaluation, class table lifting, and printing. The “CSR”

column shows the running time of the Class Structure Refactoring. All the time is measured in

milliseconds.
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According to Table 4, the forward evaluation takes 1 ms ∼ 6 ms to compute the program output.

Considering all the time costs of the forward transformation, our tool consumes 133 ms ∼ 3855 ms.

Except for Data Sync, the most time-consuming program, our tool can return the forward results

in 1.5 s.

Regarding the backward evaluation, on average, our tool can propagate each direct manipulation

backward within 5 ms ∼ 2013 ms. Backward evaluation needs more time that forward evaluation be-

cause it is more computationally complicated. The increase in the time spend during backward

evaluation of benchmarks 4, 5, 6, 8, 10, 11 is caused by large data structures (mainly strings and

lists), which can affect the backward evaluation time to a much greater extent than other metrics.

The time cost of class table lifting is generally <5 ms, which is insignificant during backward

transformation. For the total time costs of the backward transformation, our tool can finish the

computation within 145 ms ∼ 4679 ms. Data Sync is also the most time-consuming program (4679

ms on average).

Based on Table 4, our answer to RQ.2 is yes—our tool can both the forward and the backward

transformation within an acceptable time cost. Since the maximum response time in Table 4 is

less than 5 seconds, we regard the performance of our tool as acceptable. There are three detailed

observations.

1) Quick Backward Evaluation. The running time of the backward evaluation (the “Bwd” column)

is less than 1 second on 10/11 examples.

2) Quick Class Structure Refactoring. The running time of the Class Structure Refactoring varies

from 1 ms to 4 ms.

3) Acceptable Backward Response Time. The response time of the system feedback after direct

manipulations (the “B:Tot” column) is less than 2 seconds on 9/11 applications.

It is worthwhile indicating that the total running time is mainly dominated by the conversion of

objects and HTML (except for the backward transformation of Tic Tac Toe), which is not carefully

optimized in our tool implementation.

5.3 Threats to Validity
Regarding internal validity, the design of direct manipulations for each example affects the response

time. For example, adding objects or changing a small object to a large one takes longer time than

other manipulations in the translation from HTML to objects. To mitigate this threat, we test both

value manipulations and structure manipulations (including adding objects and modifying types)

in each example and measure the fastest and slowest response times for different manipulations.

From Table 4, the largest difference between the fastest and slowest response times, 744 ms, is

acceptable. Of course, in practice, some extreme cases, like copying entire pages, may significantly

increase the total backward running time. In the future, we will complement this extreme case

testing and investigate acceleration methods.

Regarding external validity, the first threat is that we only evaluate our approach based on

Swing programs. To mitigate this issue, we should use GUI programs developed based on different

languages and frameworks. It will be our future work to enhance our evaluation based on more

GUI programs. However, Java Swing is a representative GUI framework containing all the main

features shared by existing mature GUI frameworks, such as AWT, SWT, and JFace. Therefore, we

believe that our conclusions (for RQ1 and RQ2) are generalizable even though other GUI programs

based on different languages and frameworks are used.

The second threat to external validity is that the benchmark programs’ sizes, the class table

sizes, and the number of objects may be too small to represent real-life applications. Consequently,

our answer to RQ2 may not be generalized to more complex programs. Ideally, we should select
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more complex GUI programs. However, our approach mainly applies to the design of a single

webpage. In fact, according to the principle of modularity, complex GUIs should be decomposed

into some simple sub-GUIs for design and implementation. Besides, the benchmarks come from

the #1 ranked Java Swing tutorial on Google and a project with 790 stars on GitHub, which are all

representative of Java Swing programs. Therefore, we believe that the benchmark programs fit the

expected application scenario, and this threat does not compromise the validity of our conclusions

for RQ2.

6 RELATEDWORK
Our work on bidirectional object-oriented programming is much related to bidirectional program-

ming, direct manipulation programming, and visual IDE for object-oriented programming.

Bidirectional Programming
Lenses [Foster et al. 2007] is a domain-specific bidirectional language to solve the view update
problem for tree-structured data. They define a well-behavedness stipulating how the get (taking
a source and returning a view) and putback (taking the original source and an updated view and

returning an updated source) should behave. Lenses are studied for the synchronization of various

data structures, including relational data [Bohannon et al. 2006], semi-structured data [Foster

et al. 2007; Kawanaka and Hosoya 2006], strings [Barbosa et al. 2010; Bohannon et al. 2008], and

models/graphs [He and Hu 2018; He et al. 2022; Hidaka et al. 2010]. However, all these bidirectional

programming languages are functional. It is this paper that presents the first bidirectional object-

oriented language with side effects. It can be effectively used for the bidirectional transformation

between object-oriented programs and their outputs.

Among the work mentioned above, UnCAL [Hidaka et al. 2010] carefully refines the existing

forward evaluation of structural recursion to produce sufficient trace information for later backward

evaluation. This trace idea has inspired our work on the bidirectional transformation between

objects and HTML in Section 4. It would also make it possible for us to extend the bidirectional

transformation to deal with graph-structured object outputs in the future.

Direct Manipulation Programming
Direct Manipulation Programming (DMP), first proposed by [Chugh 2016], is to construct software

systems that tightly couple programmatic and direct manipulation. DMP is studied in various

domains: LITTLELEO [Mayer et al. 2018] for web development; Sketch-n-Sketch [Hempel and Chugh

2016; Hempel et al. 2019] for SVG graphics design; CapStudio [Fukahori et al. 2014] for game

application design; and FormsEdit [Avrahami et al. 1989] for graphical user interfaces. Our tool,

BiOOP, can be considered a direct manipulation system for both dynamic web development and

SVG graphics design.

Our work is based on LITTLELEO [Mayer et al. 2018], which presents a backward evaluation algo-

rithm for a functional programming language. The heart of the algorithm lies in a well-defined

strategy to update variables and variable bindings, which inspired our backward evaluation on

method invocations, where the method body is updated first, then the updates are propagated to the

receiver and the passed parameters. There is a sharp difference from our work: they present the bidi-

rectional evaluation for a functional language, whereas we present the bidirectional evaluation for

an object-oriented language with class hierarchies and references.

Sketch-n-Sketch [Hempel and Chugh 2016; Hempel et al. 2019] provides a graphical editor

for drawing shapes, relating shapes to each other, and grouping shapes together. For one thing,

their approach is designed for functional programs, while our approach supports object-oriented

programs. For another, their approach only supports certain kinds of direct manipulations on SVG
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graphics, while our approach can handle more general output, such as HTML pages. Of course,

their work suggests that we can introduce more kinds of direct manipulations, such as grouping

components, to our system by defining object-oriented code templates.

FormsEdit [Avrahami et al. 1989] provides two editable views, allowing developers to use text

editing and direct graphics editing in any combination, rapidly switching from one view to the other

and seeing the results in both. The language FormsVBT takes the form of symbolic expressions (s-

expressions), while our work is based on a general object-oriented language. Their implementation

maintains a parse tree as a shared data structure. The transformation between the Parse Tree

and the Graphics View is similar to the second mapping (between the objects and HTML) in our

two-stage bidirectionalization mentioned in Section 4. The main difference is that they implemented

the transformation in a one-to-one mapping, but we allow users to customize the transformation

templates, which is more flexible.

CapStudio [Fukahori et al. 2014] is a development environment for a visual application with an

interactive screencast using Processing [Fry et al. 2001]. A screencast is a movie player-like output

window with code editing functionality. They record the function calls and their parameters in

the forward editing, which traces the corresponding position of the source program to modify in

the backward editing. They only permit modifications to the function calls’ parameters, unlike our

approach, which permits modifications to arbitrary terms.

Visual IDE for Object-Oriented Programming
Many object-oriented language IDEs have visual design interface features, such as Qt Creator
[Nord and Chambe-Eng 1995] for C++; Visualiser [Visualiser 2004] in Eclipse; JFormDesigner

[JFormDesigner 2003] for Java Swing. These tools can update the code to a certain extent by

directly manipulating the components on the visual interface. They only permit developers to alter

a static screenshot that depends on fixed templates related to object-oriented programs, unlike

our approach, which allows developers to manipulate the execution output directly to update the

program.

Morphic [Maloney 1995] is the user interface framework for Self [Ungar and Smith 1987]. A

primary goal of morphic is to make it easy to construct and edit interactive graphical objects,

both by direct manipulation and from within programs. Morphic is relevant to the second stage

of bidirectional transformations in our system, both of which establish a mapping between the

object structure and the actual representation. In future work, we can even replace O-bx-H with a

Morphic-like visual IDE for richer direct manipulations.

7 CONCLUSION
This paper presents the first bidirectional object-oriented language BiFJ, which supports developers

not only to do text-based programming but also to manipulate objects in the output directly. Al-

though we focuses on GUI design, our approach is domain-independent. Based on the bidirectional

evaluation for pure functional languages, we present a bidirectional semantics for object-oriented

programming with references. We tackle the challenges of bidirectional evaluation in the complex

class inheritance hierarchies and the global read-and-write state. To deal with objects, we adopt

subclassing when updating method invocations and optimize the class table to reduce class redun-

dancy. To deal with references, we focus on the bidirectional semantics for reference creations,

dereferences, and assignments and emphasize the updating order and effect rollback is crucial for

references. We prove that our bidirectional object-oriented evaluations satisfy the round-tripping

properties when the output is altered consistently. To allow developers to manipulate the object

structure directly, we design the two-stage bidirectionalization and develop the second bidirec-

tional transformation between the object structure and the mapped HTML to guarantee successful
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reflection to the source program. Our experimental results show the expressiveness of our language

and efficiency of our tool.

Our language is limited in its lack of polymorphism compared to practical object-oriented lan-

guages. In the future, we will incorporate a type system to investigate the impact of polymorphism

on our existing bidirectional evaluation semantics.
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