
Towards Bidirectional Live Programming
for Incomplete Programs

Xing Zhang Zhenjiang Hu∗

Key Laboratory of High Confidence Software Technologies, MoE

School of Computer Science, Peking University

zhangstar@stu.pku.edu.cn huzj@pku.edu.cn

ABSTRACT

Bidirectional live programming not only allows software develop-

ers to see continuous feedback on the output as they write the

program, but also allows them to modify the program by directly

manipulating the output, so that the modified program can get

the output that was directly manipulated. Despite the appealing

of existing bidirectional live programming systems, there is a big

limitation: they cannot deal with incomplete programs where code

blanks exist in the source programs.

In this paper, we propose a framework to support bidirectional

live programming for incomplete programs, by extending the out-

put value structure, introducing hole binding, and formally defin-

ing bidirectional evaluators that are well-behaved. To illustrate

the usefulness of the framework, we realize the core bidirectional

evaluations of incomplete programs in a tool called Bidirectional

Preview. Our experimental results show that our extended back-

ward evaluation for incomplete programs is as efficient as that for

complete programs in that it is only 21𝑚𝑠 slower on a program with

10 holes than that on its full program, and our extended forward

evaluation makes no difference. Furthermore, we use quick sort and

student grades, two nontrivial examples of incomplete programs,

to demonstrate its usefulness in algorithm teaching and program

debugging.

KEYWORDS

live programming, bidirectional evaluation, direct manipulation,

hole bindings, hole closures

ACM Reference Format:

Xing Zhang Zhenjiang Hu∗. 2022. Towards Bidirectional Live Program-

ming for Incomplete Programs. In 44th International Conference on Software

Engineering (ICSE ’22), May 21–29, 2022, Pittsburgh, PA, USA. ACM, New

York, NY, USA, 11 pages. https://doi.org/10.1145/3510003.3510195

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9221-1/22/05. . . $15.00
https://doi.org/10.1145/3510003.3510195

1 INTRODUCTION

Software developers have psychological expectations1 on the out-

put when programming in many scenarios, particularly in the de-

sign of systems such as dynamic web pages, graphical user inter-

faces (GUIs), slide-based presentations, and data visualizations. To

combine the intuitiveness of direct manipulation on the output

with the abstractness and repeatability of text-based programming,

researchers have developed many useful bidirectional live program-

ming systems, such as Sketch-n-Sketch [11], Capstudio [7], and

Carbide Alpha [9], which can not only allow developers to see

continuous feedback on the output when they write programs, but

also allow them to modify the program by directly manipulating

the output so that the modified program can get the output that

was directly manipulated.

Despite the appeal of the existing bidirectional live programming

systems, there is a big limitation: they cannot deal with incomplete

programs where code blanks exist in the source programs [13]. In

practice, software developers tend to program in a way where they

skip some parts by leaving some code blank here and there in the

program during programming. Therefore, it would be practically

useful if, even when the program is incomplete, developers could

still directly manipulate the output and automatically synchronize

the program with the updated output.

Fortunately, Omar et al. [14] have made a nice progress in this

direction, showing that it is possible to do (unidirectional) live pro-

gramming for incomplete programs. They model incomplete pro-

grams as expressions with holes, which denote missing expressions.

Rather than aborting the evaluation when a hole is encountered,

they track the evaluation state (also known as closure), i.e., vari-

ables with their bindings that can be accessed by the hole instances,

allowing developers to observe this information in editor services.

With the technique of live programming for incomplete pro-

grams, what we need to do is to make this technique bidirectional

to achieve the goal of bidirectional live programming for incom-

plete programs. Different from complete programs, the output of

incomplete programs may consist of the output value and closures

of holes, both of which should allow direct manipulation (modifica-

tion).

To this end, we are facing three challenges: (1) In forward eval-

uation, since the output of incomplete programs is more complex

than that of complete programs and it needs to be reflected back

later, the output value structure needs to be carefully designed;

(2) In backward evaluation, holes in the program are special and

1Psychological expectations refer to users’ expectations of what the output looks like
and what content the output displays. For example, in web development, developers
often design prototypes in advance and have expectations about what components
are included and where they are located.

2154

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xing Zhang Zhenjiang Hu∗

Figure 1: An incomplete program written in Bidirectional Preview generates an incomplete HTML table of classmate names

and their date of birth. The language used is defined in Figure 9.

should not simply be treated as an undetermined value, because

one hole may be referred many times in the forward evaluation

and thus each hole may be associated with multiple values; (3) To

guarantee the stability of bidirectional evaluation for incomplete

programs, it is important to securely concatenate upstream and

downstream backward evaluations that are hole-partitioned and

satisfy the round-tripping properties.

To address challenge (1), we extend the definition of values with

three types of holes, including instantiations of the source hole

expressions, temporary holes generated when evaluation cannot

continue, and sub holes generated after holes decomposition. To

address challenge (2), we propose the notion of hole bindings, which

record the value of a hole under a certain evaluation state. As part

of the forward evaluation input, it will be updated in backward

evaluation. To address challenge (3), we carefully design a pair of

forward and backward evaluations and prove that they satisfy the

round-tripping property. This implies that the local consistency

can guarantee global consistency.

In this paper, we propose a new framework for bidirectional live

programming for incomplete programs. The framework supports

developers not only to write incomplete programs and observe the

output with hole closures in editor services, but also to directly

manipulate them to synchronize the program with the output. Our

main technical contributions can be summarized as follows:

• We design a programming framework to support bidirec-

tional live programming for incomplete programs so that

developers can directly manipulate the output to synchro-

nize the program with the updated output even when the

program is not finished (Section 3). As far as we are aware,

this is the first framework that can support bidirectional live

programming for incomplete programs.

• We formalize a bidirectional evaluation for incomplete pro-

grams (Section 4), which successfully solves the three chal-

lenges of defining operable output values for incomplete

programs, updating holes with constants, and updating pro-

grams with hole values. Besides, the round-tripping proper-

ties [6, 12] can be guaranteed (Section 4.4).

• We give an efficient implementation of the bidirectional live

programming framework as a concrete tool called Bidirec-

tional Preview, which is available at the public repository1.

We use two nontrivial examples (Section 5) to demonstrate

practical usefulness of our system in algorithm teaching

and program debugging. Besides, our experimental results

show that compared to bidirectional evaluation for complete

programs, our backward evaluation is only 21𝑚𝑠 slower on
an incomplete program with 10 holes than on its complete

program, and the forward evaluation is almost no different

(Section 6).

2 OVERVIEW

In this section, we shall demonstrate how developers go through

bidirectional live programming (forward text-based programming

and backward direct manipulation) to accomplish a web develop-

ment task. Consider the task of implementing an HTML table that

displays each of your classmates along with their date of birth.

Note that the HTML example is adapted from the baseline work

on the complete program in Sketch-n-Sketch [11]. With our tool

Bidirectional Preview, the developer may start with an incomplete

program that generates an incomplete prototype.

2.1 Initial Incomplete Program

Figure 1 shows a screenshot of the system, which consists of an

incomplete program (the auxiliary functions are omitted) on the left

and the incomplete table it generates on the right. Lines 41 through

46 define the classmate data; each element is a three-element list,

1https://github.com/xingzhang-pku/BidirectionalPreview

2155

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

Towards Bidirectional Live Programming

for Incomplete Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 2: When modifying “James” to “Jack” in the first line

of the Context, the classmate data in line 42 of the source

program changes correspondingly.

Figure 3: When modifying hole ∗2 in the first line of the

HTML table to “Sept. 5th, ”, the output value is propagated

to the source program and ℎ1 is inferred to be “, ”.

consisting of the name, the month and day of birth, and the year of

birth (for now, the data is missing).

The main program consists of two parts: lines 48 through 53

define the data process, using a spacer to connect two parts of

the date; and lines 54 through 68 define the HTML rendering of

table headers and content. The program contains three holes (red

numbers): the first one ℎ1 is the expression assigned to variable
spacer; the second one ℎ2 is an uninitialized string-type constant in
list colors, and the last one ℎ3 is the body of data rendering function
drawRow.

Due to the missing code in drawRow, the output HTML table has

its header but lacks content. On the top of the OUTPUT window,

the four purple boxes denote four unknown HTML elements. Hole

values are indicated by the hole name written in curly braces. In

particular, holes 3_9 through 3_12 are four instantiations of ℎ3,
and their closures (free variables and their values) can be switched

via the selector in the CONTEXT window. The current CONTEXT

window shows a partial closure of hole 3_9, including row being

[“𝐽𝑎𝑚𝑒𝑠”, {∗2}], i being 0, etc, where {∗2} stands for a temporary
hole value generated by string concatenation with ℎ1.

2.2 Direct Manipulation on Context

Although the program is unfinished, the developer can perform

direct manipulation on the output and the context. Themodification

includes updating a value to another value and updating a hole to

a value, or vice versa.

Figure 2 shows that when modifying the first element of 𝑟𝑜𝑤
from "James" to "Jack" in the first line of the Context, the classmate

data in Line 42 of the program is updated correspondingly. HTML

values are presented as HTML strings in the Context like headerRow

in Figure 1 and can also be modified.

2.3 Direct Manipulation on Output

The functionality of the missing code at ℎ3 is to color the even-
numbered lines of the table lightblue and the odd-numbered lines

Figure 4: Fill in the missing code in ℎ3.

Figure 5: When using DOM Inspector to initialize the uncer-

tain color of the cell with “Linda” on it, “lightyellow” is prop-

agated toℎ2 and insert a newpiece of record to hole bindings.

the missing color at ℎ2. After the developer fills in ℎ3 as shown in
Figure 4, the shape of the table is complete but the “Date of Birth”

column is still incomplete because of ℎ1, where holes ∗2, ∗4, ∗6, and
∗8 display in purple boxes.

2.3.1 Modify Text in Output. As shown in the right of Figure 3,

the developer updates hole ∗2 in the first row to “Sept. 5th, ” which

is in his/her expected date format. The modified HTML table is

propagated to the source program and the system infers that the

value of ℎ1 is “, ”.
Without replacing ℎ1 locally, a new piece of record is added to

the Hole Bindings as shown in the left of Figure 3, which means

ℎ1 should be evaluated to “, ”, under the context (not shown in full)
including 𝑐𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒𝑠 and so on.

2.3.2 Modify Output Using DOM Inspector. Besides directly mod-

ify the text in output, developers can conveniently modify the

output using developer tools (e.g. DOM Inspector) in the browser.

As shown in Figure 5, when the developer is not sure of the desired

color, he/she set the first element in 𝑐𝑜𝑙𝑜𝑟𝑠 to ℎ1. After the forward
evaluation, due to the uninitialized color for odd-numbered lines

of the HTML, the background color is default white. Then the de-

veloper uses the DOM inspector to select the cell “Linda” in the

third row of the table, and sets its background-color property to

“lightyellow” in the Styles Box. Through backward evaluation, the

color value is propagated to ℎ2 and a new piece of record about ℎ2
is added to hole bindings as shown in the bottom of Figure 5.

2156

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xing Zhang Zhenjiang Hu∗

Figure 6: System Framework

Summary

After the above series of manipulations, the developer accomplished

the task of finishing the program with ℎ1 being “, ” and ℎ2 being
“lightyellow”, andℎ3 being defined in Figure 4, which runs to get the
expected HTML table. In summary, our tool is a direct manipulation

system of incomplete programs with friendly interactions, being

effective and productive.

3 SYSTEM DESIGN

Our framework for supporting bidirectional live programming for

incomplete programs is shown in Figure 6. The down arrows repre-

sent the forward process of normal live programming, and the up

arrows represent the backward process of modifying the program

by directly manipulating the output. We use four colors to mark

the four parts of the input, output, intermediate results, and the

core implementation respectively.

The user input is a source program, which is written in a simple

functional language (used in [11]) with the hole extension. The

language used in our system is defined in Figure 9. The output

that developers can direct manipulate consists of two parts: one is

the visual object designed by the developer (we use HTML pages

as an example, but it can also be slide-based presentations, data

visualizations, etc.); the other is the closures related to hole values in

visual objects, also known as the Context in Bidirectional Preview.

Developers can modify the value of each variable in a hole closure

in the Context, and if the value is a hole value, they can jump to its

closure and modify it. The intermediate results in the system are

the internal representation of the program-Abstract Syntax Tree

(AST) and the internal representation of the output values.

The core part of the system is the content in white boxes, includ-

ing three bidirectional transformations [4] denoted with red dotted

boxes. The front-end bidirectional transformation maintains the

consistency between the program and its AST, including the parser

which parses the program to the AST, and the printer which prints

the updated AST back to the program in the original format with

the same white spaces. The back-end transformation maintains the

Figure 7: Quick Sort

Figure 8: Student Grades

consistency between the output value and the HTML pages with

hole closures, including the HTML printer which prints the HTML

pages and collects the hole closures, and the HTML parser which

parses the HTML pages with hole closures to the output values.

The core bidirectional transformation is the most critical bidirec-

tional evaluators, including the forward evaluation and backward

evaluation. The forward evaluation takes the AST and hole bindings

as input and returns the output values. The backward evaluation

takes the updated output values and the original AST with hole

bindings as input and returns the updated AST with hole bindings.

The core bidirectional transformation maintains the consistency

between the AST with hole bindings and the output values.

It should be noted that the parser and printer in the front-end

and back-end bidirectional transformations are not special. The

framework has been implemented in Bidirectional Preview , ba-

sically following the structure of Sketch-n-Sketch [11]. The most

important contribution of this paper is the crucial bidirectional

evaluation part, which will be explained in detail in Section 4.

4 THE CORE BIDIRECTIONAL EVALUATORS

In this section, we show how to tackle the most challenging part

of the framework. As discussed in the introduction, we need to ad-

dress three issues: defining operable output values for incomplete

programs, updating holes with constants, and updating programs

with hole values. In the following, we shall address these issues,

by explaining the (source) programs to be developed, and defin-

ing evaluation rules for the forward evaluator and the backward

evaluator in the framework of bidirectional live programming for

incomplete programs.

4.1 Source Program

The source program is written in a simple functional language,

almost the same as that in Sketch-n-Sketch [11] with additional

holes. It is a functional language with holes to denote blank codes.

2157

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

Towards Bidirectional Live Programming

for Incomplete Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Expressions e ::= (| |)𝑢 | 𝑐 | 𝑥 | 𝜆𝑝.𝑒 | 𝑒1 𝑒2 | 𝑒1 :: 𝑒2 | (𝑒1, 𝑒2)

| let p e1 e2 | letrec p e1 e2 |

| if e1 e2 e3 | case e (p1, e1) · · ·

Constants c ::=𝑛 | 𝑏 | 𝑠 | [] | (+) | (∗) | (&&) | 𝑛𝑜𝑡

Patterns p ::= 𝑐 | 𝑥 | 𝑝1 :: 𝑝2 | (𝑝1, 𝑝2)

Environment E ::= ∅ | 𝐸, 𝑥 ↦→ 𝑣

Values v ::= (| |)uE | dv

Determinate Values dv ::= c | (E, 𝜆p.e) | v1 :: v2 | (v1, v2)

HoleName u ::= n | ∗ n | u_n | u.n

Figure 9: Syntax

Figure 9 gives the syntax of the language. In particular, we define

the output of an incomplete program suitable for manipulation,

which addresses the first issue (i.e., the definition of operable output

values) we mentioned.

In our language, expressions (i.e. programs) include hole expres-

sions (| |)𝑢 (𝑢 is the hole name), constants 𝑐 , variable 𝑥 , function ap-
plication 𝑒1 𝑒2 (apply function 𝑒1 to arguments 𝑒2), list construction
𝑒1 :: 𝑒2 (append the list 𝑒2 with the head element 𝑒1), tuple (𝑒1, 𝑒2),
let-bindings let 𝑝 𝑒1 𝑒2, letrec-bindings letrec 𝑝 𝑒1 𝑒2, conditionals
if 𝑒1 𝑒2 𝑒3, and case expressions case 𝑒 (𝑝1, 𝑒1) · · · . The definition
of constant includes numbers 𝑛, booleans 𝑏, strings 𝑠 , the empty
list [], and primitive operators.
Simply put, a source program is an expression that has let-

bindings combined. Each expression can only access variables de-

fined in the outer let-bindings. We have seen an example in the

overview, and there are two more example programs, i.e. quick sort

shown in Figure 7 and student grades shown in Figure 8.

4.2 Forward Evaluator

The forward evaluator computes the value of an expression, which

explains how the output we defined in the previous subsection

is obtained. Figure 10 defines the evaluation rules (whose names

are prefixed with “E-”) of the forward evaluator, which is standard

and similar to that in Sketch-n-Sketch [11], except for the evalua-

tion rules involving holes. In this section, we mainly explain the

evaluation of holes in hole expressions, function calls, primitive op-

erations, conditionals, etc, where the three different types of holes

are generated. The forward evaluation judgment Σ;𝐸 � 𝑒 ⇒ 𝑣
states that “the expression e evaluates to v under the environment

𝐸 and the hole bindings Σ.”

4.2.1 Two Bindings. There are two bindings, environment 𝐸 and
hole bindings Σ, used in the forward evaluator. As shown in Figure
9, environment 𝐸 is a variable-value mapping that denotes the eval-

uation state. 𝐸, 𝑥 ↦→ 𝑣 denotes inserting the binding of 𝑥 with 𝑣 to
𝐸. Hole-bindings Σmaps pairs of hole names 𝑢 and environments 𝐸
to determinate values and its notation is the same as environments.

Example 4.1. Consider the expression x+(| |)1 under the envi-
ronment {𝑥 ↦→ 1} (𝐸) and the hole bindings {(1, {𝑥 ↦→ 1}) ↦→ 2}

(Σ). The variable 𝑥 evaluates to 1 according to 𝐸 and (| |)1 under 𝐸
evaluates to 2 according to Σ. �

In addition, supplementary definitions of values and hole names

are as follows. Values v include determinate values 𝑑𝑣 and hole
values (| |)𝑢𝐸 where 𝑢 means the hole name and 𝐸 means the closure.

The definition of hole closures is the same as the environment,

which is a variable-value mapping. Determinate values include

constants 𝑐 , function closure (𝐸, 𝜆𝑝.𝑒) where 𝐸 binds free variables

in the body of the function 𝜆p.e, list values 𝑣1 :: 𝑣2, and tuples
(𝑣1, 𝑣2). Hole names 𝑢 includes numbers 𝑛 representing source hole
expressions, numbers beginning with an asterisk ∗𝑛 representing
intermediate temporary hole values, numbers joined with an un-

derscore 𝑢_𝑛 representing hole instantiations, and numbers joined
with a dot 𝑢.𝑛 representing sub holes.

4.2.2 Hole instantiations. The hole instantiations are generated

when evaluating the source hole expressions. E-Hole-2 is the same

as the evaluation rule of hole expressions defined by Omar et al.

[14]. It says that when the pair consisting of 𝑢 and 𝐸 is not found
as a key in hole bindings Σ, the hole expression (| |)𝑢 evaluates to a

hole instantiation (| |)
𝑢_𝑛
𝐸 , where 𝑛 means the nth instantiation of

the hole expression 𝑢 and the environment 𝐸 as a closure attaches

to it. There is no hole binding when the developer has just finished

the initial incomplete program, so all hole expressions evaluate to

hole instantiations.

E-Hole-1 is different from the rule in previous work [14]. It says

that if hole expression name 𝑢 binds a determinate value 𝑑𝑣 in
hole bindings Σ under the environment 𝐸, it will evaluate to 𝑑𝑣 .
For example, Figure 3 shows that ℎ1 binds the value “, ” under the
environment (containing 𝑐𝑙𝑎𝑠𝑠𝑚𝑎𝑡𝑒𝑠 , etc). Therefore, ℎ1 assigned
to 𝑠𝑝𝑎𝑐𝑒𝑟 evaluates to “, ”, and the date of birth of Kim evaluates to

“Jan. 16th, ”, rather than the hole value ∗4.

4.2.3 Sub Holes. Sub holes are new in our evaluation, and they

are generated when hole values do pattern matching. Before a

detailed explanation of that, we show an example first, where a

hole decomposes to a list construction and matches with a list

pattern to produce two sub holes.

Example 4.2. Consider the function call (\[x].x) (| |)1. The ar-

gument (| |)1 evaluates to (| |)
1_1
∅

which decomposes to (| |)
1_1.1
∅

::

(| |)
1_1.2
∅

. In particular, (| |)1_1.1
∅

and (| |)
1_1.2
∅

are sub holes of (| |)1
∅
, and

match with [𝑥] (i.e., 𝑥 :: []) to returns {𝑥 ↦→ (| |)
1_1.1
∅

}, according to

M-Cons (explained later). Therefore, the final result is (| |)
1_1.1
∅

. �

Pattern matching is the process of matching values with struc-

tural patterns and binding values with corresponding variables in

the pattern. The two key axioms in matching rules are defined as

follows. Thematching judgement𝑚𝑎𝑡𝑐ℎ(𝑝, 𝑣) = 𝐸 states that “value
𝑣 matches with pattern 𝑝 and the result is the matched bindings
𝐸.” The rule M-Const says that a hole value (| |)𝑢𝐸 matches with any

constant pattern 𝑐 and no binding is generated. The rule M-Cons
is used when the value 𝑣 matches with the list pattern 𝑝1 :: 𝑝2. If
the decomposition of 𝑣 is 𝑣1 :: 𝑣2, 𝑣1 matches with 𝑝1 to produce 𝐸1
and 𝑣2 matches with 𝑝2 to produce 𝐸2, respectively. The matched
bindings are the concatenation of 𝐸1 and 𝐸2.

2158

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xing Zhang Zhenjiang Hu∗

E-Const
Σ;𝐸 � 𝑐 ⇒ 𝑐

E-Var
𝐸 (𝑥) = 𝑣

Σ;𝐸 � 𝑥 ⇒ 𝑣

E-Hole-1
Σ(𝑢, 𝐸) = 𝑑𝑣

Σ;𝐸 � (| |)𝑢 ⇒ 𝑑𝑣
E-Hole-2

(𝑢, 𝐸) ∉ 𝑑𝑜𝑚(Σ) 𝑛 𝑖𝑠 𝑓 𝑟𝑒𝑠ℎ

Σ;𝐸 � (| |)𝑢 ⇒ (||)
𝑢_𝑛
𝐸

E-Fun
Σ;𝐸 � 𝜆𝑝.𝑒 ⇒ (𝐸, 𝜆𝑝.𝑒)

E-App

Σ;𝐸 � 𝑒1 ⇒ (𝐸𝑓 , 𝜆𝑝.𝑒𝑓) Σ;𝐸 � 𝑒2 ⇒ 𝑣2
𝐸𝑚 =𝑚𝑎𝑡𝑐ℎ(𝑝, 𝑣2) Σ;𝐸𝑚 ◦ 𝐸𝑓 � 𝑒𝑓 ⇒ 𝑣

Σ;𝐸 � 𝑒1 𝑒2 ⇒ 𝑣

E-Case-1
Σ;𝐸 � 𝑥 ⇒ (||)𝑢𝐸 𝑛 𝑖𝑠 𝑓 𝑟𝑒𝑠ℎ

Σ;𝐸 � 𝑐𝑎𝑠𝑒 𝑥 (𝑝𝑖 → 𝑒𝑖)
𝑖=1..𝑛 ⇒ (||)∗𝑛𝐸

E-Case-2

Σ;𝐸 � 𝑥 ⇒ 𝑑𝑣
∃ 𝑗 .𝐸𝑚 =𝑚𝑎𝑡𝑐ℎ(𝑝 𝑗 , 𝑑𝑣) Σ;𝐸𝑚 ◦ 𝐸 � 𝑒 𝑗 ⇒ 𝑣

Σ;𝐸 � 𝑐𝑎𝑠𝑒 𝑥 (𝑝𝑖 → 𝑒𝑖)
𝑖=1..𝑛 ⇒ 𝑣

E-Fix
Σ;𝐸 � 𝑒 (𝑓 𝑖𝑥 𝑒) ⇒ 𝑣

Σ;𝐸 � 𝑓 𝑖𝑥 𝑒 ⇒ 𝑣
E-Plus

Σ;𝐸 � 𝑒1 ⇒ (||)
𝑢1
𝐸 𝑜𝑟 Σ;𝐸 � 𝑒2 ⇒ (||)

𝑢2
𝐸 𝑛 𝑖𝑠 𝑓 𝑟𝑒𝑠ℎ

Σ;𝐸 � 𝑒1 + 𝑒2 ⇒ (||)∗𝑛𝐸

Figure 10: Evaluation Rules of Forward Evaluator

M-Const
𝑚𝑎𝑡𝑐ℎ(𝑐, (| |)𝑢𝐸) = ∅

M-Cons

𝑣 � 𝑣1 :: 𝑣2
𝑚𝑎𝑡𝑐ℎ(𝑝1, 𝑣1) = 𝐸1 𝑚𝑎𝑡𝑐ℎ(𝑝2, 𝑣2) = 𝐸2

𝑚𝑎𝑡𝑐ℎ(𝑝1 :: 𝑝2, 𝑣) = 𝐸1 ◦ 𝐸2

The decomposition relation is defined using symbol �, and
𝑣1 � 𝑣2 states that “𝑣1 decomposes to 𝑣2.” The determinate val-
ues decompose to themselves, such as [1, 2] � [1, 2]. The hole
value decomposes to a list construction with two sub holes, written

as (| |)𝑢𝐸 � (| |)𝑢.1𝐸 :: (| |)𝑢.2𝐸 .

4.2.4 Temporary Holes. To make the forward evaluator continue

the subsequent evaluation when it’s stuck because of holes, we use

temporary holes as result, rather than proceeding around holes [14].

In particular, temporary holes are generated in the evaluation of

case expressions (E-Case-1) and primitive expressions (E-Plus). It is

important to note that guard expressions in case expressions only

consider the situation of a single variable; more complex situations

can be achieved through syntactic sugar of function calls.

The rule E-Case-1 says that the case expression evaluates to a

temporary hole value (| |)∗𝑛𝐸 when 𝑥 evaluates to a hole value. The
closure of the temporary hole value is the environment 𝐸, and 𝑛
does not conflict with the names of the source hole expressions.

The rule E-Plus is similar to E-Case-1, which stops the forward

evaluation and returns a temporary hole value when encounters

that 𝑒1 or 𝑒2 evaluates to a hole value.

4.3 Backward Evaluator

In this subsection, we explain how to address the second and third

issues we mentioned at the beginning of this section, i.e., how to

update hole expressions, and how to update incomplete programs

with hole values in the backward evaluator.

The backward evaluator is the most important part of our ap-

proach. It takes the original internal-representation AST of the

program with the hole bindings and the updated output values

as the input and returns the updated AST and hole bindings. The

backward evaluation judgment Σ;𝐸 � 𝑒 ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑒 ′ states
that "when the output value updates to 𝑣 ′, the program 𝑒 updates

to 𝑒 ′, the environment 𝐸 updates to 𝐸 ′, and the hole bindings Σ
updates to Σ′”.

The evaluation rules (whose names are prefixed with “U-”) of the

backward evaluator are defined in Figure 11. The backward evalu-

ation rules come in three categories: replacement rules overwrite

values (base constants, function closures) in the program with new

ones and update bindings of hole expressions; propagation rules,

as the opposite of their corresponding forward rules, propagate the

updated output to the whole evaluation process (through variables,

applications, conditionals, etc); primitive rules define how to update

operations on values, and the evaluation policies are heuristic and

can be customized by domain experts.

4.3.1 Replacement Rules. Replacement rules define what can be

overwritten in the source program and how to update the hole

bindings. There are three axioms for holes, constants, and function

closures, respectively.

Hole Expressions. The rule U-Hole-1 defines how a determinate

value updates the hole expression, like Example 4.3.

Example 4.3. Consider the program let a = 1 in (| |)1. When

the output value (| |)
1_1
{𝑎 ↦→1}

updates to 2, rather than rewriting the

program to let a = 1 in 2, the hole binding which binds pair
(1, 𝑎 ↦→ 1) with 2 is added to the hole bindings while the program re-

mains unchanged. The hole binding means that the hole expression

(| |)1 evaluates to 2 when variable 𝑎 evaluates to 1. In the forward
evaluation with the updated hole bindings, the program evaluates

to 2. �

The rule U-Hole-1 says that, if a determinate value 𝑑𝑣 updates a
hole expression𝑢, then the binding of pair (𝑢, 𝐸) with 𝑑𝑣 is inserted
into the hole bindings, or the original binding of (𝑢, 𝐸) is updated,
while the program remains unchanged. The rule U-Hole-2 defines

how a hole value updates the hole expression, like Example 4.4

Example 4.4. Consider the program in Example 4.3. If the output

value is a hole value (| |)1_1
{𝑎 ↦→2}

, the updated hole closure {𝑎 ↦→ 2}will

propagate to the variable 𝑎 through U-Fun. Therefore, the program
updates to let a = 2 in (| |)1. �

The rule U-Hole-2 says that, if the output value is a hole value

(| |)𝑢
′

𝐸′ , the domain of the updated hole closure is checked to see if

2159

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

Towards Bidirectional Live Programming

for Incomplete Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

U-Hole-1
Σ′ = Σ, (𝑢, 𝐸) ↦→ 𝑑𝑣

Σ;𝐸 � (| |)𝑢 ⇐ 𝑑𝑣 � Σ′;𝐸 � (| |)𝑢
U-Hole-2

𝑑𝑜𝑚(𝐸) = 𝑑𝑜𝑚(𝐸 ′)

Σ;𝐸 � (| |)𝑢 ⇐ (||)𝑢
′

𝐸′ � Σ;𝐸 ′ � (| |)𝑢

U-Const-1
Σ;𝐸 � 𝑐 ⇐ 𝑐 ′ � Σ;𝐸 � 𝑐 ′

U-Const-2
𝑑𝑜𝑚(𝐸) = 𝑑𝑜𝑚(𝐸 ′) 𝑢2 𝑖𝑠 𝑓 𝑟𝑒𝑠ℎ

Σ;𝐸 � 𝑐 ⇐ (||)
𝑢1
𝐸′ � Σ;𝐸 � (| |)𝑢2

U-Plus-1

Σ;𝐸 � 𝑒1 ⇒ (||)𝑢𝐸 Σ;𝐸 � 𝑒2 ⇒ 𝑑𝑣2
Σ;𝐸 � 𝑒1 ⇐ 𝑑𝑣 ′ − 𝑑𝑣2 � Σ1;𝐸1 � 𝑒

′
1

Σ;𝐸 � 𝑒1 + 𝑒2 ⇐ 𝑑𝑣 ′ � Σ1;𝐸1 � 𝑒
′
1 + 𝑒2

U-Plus-2

𝑑𝑜𝑚(𝐸) = 𝑑𝑜𝑚(𝐸 ′)
Σ;𝐸 � 𝑒1 ⇒ (||)

𝑢1
𝐸 𝑜𝑟 Σ;𝐸 � 𝑒2 ⇒ (||)

𝑢2
𝐸

Σ;𝐸 � 𝑒1 + 𝑒2 ⇐ (||)𝑢𝐸′ � Σ;𝐸 ′ � 𝑒1 + 𝑒2

U-Cons

𝑣 ′ � 𝑣 ′1 :: 𝑣
′
2

Σ;𝐸 � 𝑒1 ⇐ 𝑣 ′1 � Σ1;𝐸1 � 𝑒
′
1 𝐸 ′ = 𝐸1 ⊕𝐸 𝐸2

Σ;𝐸 � 𝑒2 ⇐ 𝑣 ′2 � Σ2;𝐸2 � 𝑒
′
2 Σ′ = Σ1 ⊕Σ Σ2

Σ;𝐸 � 𝑒1 :: 𝑒2 ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑒 ′1 :: 𝑒
′
2

U-Fix
Σ;𝐸 � 𝑒 (𝑓 𝑖𝑥 𝑒) ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑒1 (𝑓 𝑖𝑥 𝑒2) 𝑒 ′ = 𝑒1 ⊕𝑒 𝑒2

Σ;𝐸 � 𝑓 𝑖𝑥 𝑒 ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑓 𝑖𝑥 𝑒 ′

U-Case

Σ;𝐸 � 𝑥 ⇒ (||)𝑢𝐸 ∃ 𝑗 . 𝐸𝑚 =𝑚𝑎𝑡𝑐ℎ(𝑝 𝑗 , (| |)
𝑢
𝐸)

Σ;𝐸𝑚 ◦ 𝐸 � 𝑒 𝑗 ⇐ 𝑣 ′ � Σ′;𝐸 ′𝑚 ◦ 𝐸 ′ � 𝑒 ′𝑗 ∅;𝐸 ′𝑚 � 𝑝 𝑗 ⇒ 𝑣 𝑗 𝐸 ′′ = 𝐸 ′, 𝑥 ↦→ 𝑣 𝑗

Σ;𝐸 � 𝑐𝑎𝑠𝑒 𝑥 (𝑝𝑖 → 𝑒𝑖)
𝑖=1..𝑛 ⇐ 𝑣 ′ � Σ′;𝐸 ′′ � 𝑐𝑎𝑠𝑒 𝑥 (𝑝𝑖 → 𝑒𝑖)

𝑖≠𝑗 | (𝑝 𝑗 → 𝑒 ′𝑗)

U-App

Σ;𝐸 � 𝑒1 ⇒ (𝐸𝑓 , 𝜆𝑝.𝑒𝑓) Σ;𝐸 � 𝑒2 ⇒ 𝑣2 𝐸𝑚 =𝑚𝑎𝑡𝑐ℎ(𝑝, 𝑣2)
Σ;𝐸𝑚 ◦ 𝐸𝑓 � 𝑒𝑓 ⇐ 𝑣 ′ � Σ𝑓 ;𝐸

′
𝑚 ◦ 𝐸 ′

𝑓
� 𝑒 ′

𝑓
Σ;𝐸 � 𝑒1 ⇐ (𝐸 ′

𝑓
, 𝜆𝑝.𝑒 ′

𝑓
) � Σ;𝐸1 � 𝑒

′
1

∅;𝐸 ′𝑚 � 𝑝 ⇒ 𝑣 ′2 Σ;𝐸 � 𝑒2 ⇐ 𝑣 ′2 � Σ2;𝐸2 � 𝑒
′
2 𝐸 ′ = 𝐸1 ⊕𝐸 𝐸2 Σ′ = Σ2 ∪ Σ𝑓

Σ;𝐸 � 𝑒1 𝑒2 ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑒 ′1 𝑒
′
2

Figure 11: Evaluation Rules of Backward Evaluator

it’s equal to the domain of the environment 𝐸. If the domains are
equal, U-Hole-2 replaces 𝐸 with 𝐸 ′ directly. This is a key step for
the updated hole closure to affect updating the source program.

As shown in Example 4.4, the updated hole closure has the same

domain as that of the original closure, which is {𝑎}. In fact, domain
consistency is an overly strict condition. If the domain of E’ covers

E, there is no bad effect on backward evaluation. However, if the

variables in 𝐸 are missing in 𝐸 ′, it will cause a breakdown in back-
ward evaluation. To simplify the problem in Bidirectional Preview,

there is no interface for adding or deleting bindings in Context, so

the domain of the environment is always consistent.

Constants. The backward evaluation rules of constants need to

consider the types of output values. The rule U-Const-1 says that,

when the output value 𝑐 updates to 𝑐 ′, the expression 𝑐 also updates
to 𝑐 ′. For example, when the output of the expression 1 updates to
2, the expression updates to 2. The rule U-Const-2 defines how a

hole value updates the constant expression, like Example 4.5.

Example 4.5. Consider the program let a = 1 in a. If the
output value 1 updates to a hole value (| |)

1_1
∅
, the program will

update to let a = (| |)1 in a. �

The rule U-Const-2 says that when a hole value (| |)𝑢1𝐸′ updates

the constant expression 𝑐 , 𝑐 will be replaced with a hole expression
𝑢2 while the environment 𝐸 remains unchanged. The hole name 𝑢1
and hole closure 𝐸 ′ are ignored because the hole value is generated
in the output without defining a closure. 𝑢2 is a fresh hole name
for the new hole expression which is different from the names of

existing holes. The rule U-Const-2 is the only way to add new hole

expressions to the program by modifying the output. When a hole

value updates the determinate value in the output, the hole value

will flow through the entire evaluation process and only change

the final constant in the program, like Example 4.5.

Function Closures. The function rule U-Fun (not shown) says

that when the output value (𝐸 ′, 𝜆𝑝.𝑒 ′) updates the expression 𝜆𝑝.𝑒
under 𝐸 and Σ, 𝜆𝑝.𝑒 updates to 𝜆𝑝.𝑒 ′ and 𝐸 updates to 𝐸 ′ while Σ
remains unchanged. U-Fun is important to propagate the changes

in the environment to sub derivations.

4.3.2 Propagation Rules. Propagation rules define how the output

changes flow throughout the whole derivation. There are three

axioms for variables, function calls, and conditionals, respectively.

Function Calls. The rule U-App defines how to update function

calls, which follows the main idea in Sketch-n-Sketch [11] except

for the hole bindings.

There are four steps in U-App: (1) 𝑒1 evaluates to the function
closure (𝐸𝑓 , 𝜆𝑝.𝑒𝑓) while 𝑒2 evaluates to 𝑣2, then the pattern match-
ing between 𝑣2 and 𝑝 returns the matched bindings 𝐸𝑚 ; (2) The
output value 𝑣 ′ updates the function-body expression 𝑒𝑓 under the
concatenation of 𝐸𝑚 and 𝐸𝑓 with the original hole bindings Σ, then
𝑒𝑓 updates to 𝑒

′
𝑓
, Σ updates to Σ𝑓 , and 𝐸𝑚 ◦ 𝐸𝑓 updates to 𝐸

′
𝑚 ◦ 𝐸 ′

𝑓
;

(3) The function closure (𝐸 ′
𝑓
, 𝜆𝑝.𝑒 ′

𝑓
) updates 𝑒1 under 𝐸 and Σ, then

𝑒1 updates to 𝑒
′
1, 𝐸 updates to 𝐸1, and Σ remains unchanged, while

the updated output value 𝑣 ′2 updates 𝑒2 and the result is that 𝑒2
updates to 𝑒 ′2, 𝐸 updates to 𝐸2 and Σ updates to Σ2; (4) Merging 𝐸1
and 𝐸2 returns 𝐸

′, while merging Σ2 and Σ𝑓 returns Σ
′. Example

4.6 shows the four steps in practice.

Example 4.6. Consider the function call (\x. [x, a]) a with
the environment {𝑎 ↦→ 1} and the hole bindings ∅. Its output is

[1, 1] and then updates to [2, 1]. In step (1), 𝑒1 evaluates to ({𝑎 ↦→

1}, 𝜆𝑥 .[𝑥, 𝑎]) while 𝑒2 evaluates to 1 and 𝐸𝑚 is {𝑥 ↦→ 1}. In step

(2), 𝑒 ′
𝑓
is the same as 𝑒𝑓 , i.e., [x,a]. 𝐸

′
𝑚 ◦ 𝐸 ′

𝑓
is {𝑥 ↦→ 2, 𝑎 ↦→ 1}

and Σ𝑓 is empty. In step (3), 𝑒1 remains unchanged. The output
value 2 updates Σ;𝐸 � 𝑒2 to ∅; {𝑎 ↦→ 2} � 𝑎. Step (4) reconciles 𝐸1

2160

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xing Zhang Zhenjiang Hu∗

({𝑎 ↦→ 1}) and 𝐸2 ({𝑎 ↦→ 2}) with the original 𝐸 ({𝑎 ↦→ 1}) and

returns {𝑎 ↦→ 2} because 𝑎 in 𝐸2 is different with the one in 𝐸. �

Environments merge and hole bindings merge are two key steps

to reconcile conflicts between two sub derivations of 𝑒1 and 𝑒2. As
for environments merge, if a variable appears free in both expres-

sions, the traditional two-way merge requires that it is updated

with the same new value in both environments. Since two-way

merge is too restrictive to make the backward evaluation work in

most scenarios, we adapt the three-way merge instead, which is

explained in detail in Sketch-n-Sketch [11]. The three-way merge

is able to handle conflicts between 𝐸1 and 𝐸2 smoothly because it
selects the value of the variable from 𝐸1 or 𝐸2 that is different from
that in 𝐸 like the environments merge in Example 4.6. Abstractly,
the three-way merge implies that the updated value has a higher

priority to be used than the original value.

As for hole bindings merge, it simply unions two hole-bindings

directly, as shown in Example 4.7. The reason is that the updated

or inserted hole bindings in Σ2 and Σ𝑓 must be different because

closures of holes in 𝑒2 and 𝑒𝑓 must be different. The updated closures
of holes in 𝑒𝑓 have the same domain as that of 𝐸𝑚 ◦𝐸𝑓 , however, in
𝑒2 the updated closures of holes have the same domain as that of 𝐸.

Example 4.7. Consider the function call (\x.[x, (| |)1]) (| |)2.

Its output is [(| |)
2_1
∅

, (| |)1_1
{𝑥 ↦→(| |)

2_1
∅

}
] and then updates to [1, 2]. In

step (2), 𝐸 ′𝑚 ◦ 𝐸 ′
𝑓
is {𝑥 ↦→ 1} and Σ𝑓 is {(1, {𝑥 ↦→ (| |)

2_1
∅

}) ↦→ 2}. In

step (3), Σ2 is {(2, ∅) ↦→ 1}. According to the hole bindings merge,

Σ′ is the union of Σ𝑓 and Σ2. �

Case Expressions. The rule U-Case defines how to update a case

expression of which the guard expression evaluates to a hole value,

like Example 4.8.

Example 4.8. Consider the expression case a of [x]->1|[]->2
under the environment {𝑎 ↦→(| |)

1_1
∅

}. Its output is (| |)∗1 (through E-

Case-1) and then updates to 3. At first, 𝑎 evaluates to (| |)
1_1
∅

and tries

to match with the first branch, i.e., [x]->1. Then the output value 3
successfully updates the branch expression 1 to 3 (through U-Const-

1). Finally, the expression updates to case a of [x]->3|[]->2
with the environment and hole bindings unchanged. Otherwise,

if the output value fails to update the first branch, the backward

evaluator will try the second branch []->2. �

The rule U-Case says that when 𝑥 evaluates to a hole value, the
hole value tries to match with each pattern and the output value

tries to update the corresponding branch. If the update success, the

updated value 𝑣 𝑗 replaces the original binding of 𝑥 in 𝐸 ′′, and the
updated branch expression 𝑒 ′𝑗 replaces 𝑒 𝑗 .

Variables. The rule U-Var is omitted and it just replaces the

original binding in the environment with the output value and

the expression remains unchanged. For example, when the output

value updates to 2, ∅; {𝑥 ↦→ 1} � 𝑥 updates to ∅; {𝑥 ↦→ 2} � 𝑥 .

4.3.3 Primitive Rules. There are many strategies to update prim-

itive operations, which can be tailored to different domains and

problems. Suppose the strategy is that the effect of backward eval-

uation on the source program is as small as possible. Here we use

plus operation and list construction as examples.

Plus. In the rule U-Plus-1, instead of updating 𝑒2 that originally
evaluates to a determinate value 𝑑𝑣2, the difference 𝑑𝑣

′ −𝑑𝑣2 as the
output value updates 𝑒1, which originally evaluates to a hole value.

Example 4.9. Consider the plus expression (| |)1+1. Its output
value is (| |)∗1

∅
(through E-Plus) and then updates to 2. According to

U-Plus-1, 𝑒2 remains unchanged and the difference 2 − 1 updates

𝑒1. Through U-Hole-1, the backward evaluator returns {(1, ∅) ↦→
1}; ∅ � (| |)1. �

The rule U-Plus-2 says that when the output value is a hole value

(| |)𝑢
𝐸′ and 𝑒1 or 𝑒2 evaluates to a hole, the environment 𝐸 is replaced

by the hole closure 𝐸 ′.
There are many backward evaluation rules for other situations

(such as both 𝑒1 and 𝑒2 evaluate to hole values) and the update
strategies are somehow subjective, so they are omitted. In our im-

plementation, each situation is handled only by a unique backward

evaluation rule, so there is only a unique solution for the whole

backward evaluation and no ambiguity. It is a better choice to pro-

vide multiple options like Sketch-n-Sketch [11], however since this

is not what we focus on, we didn’t implement it in our tool.

List Construction. The rule U-Cons defines how to update a

list construction, like Example 4.10.

Example 4.10. Consider the expression [a,a] under the envi-
ronment {𝑎 ↦→ (| |)

1_1
∅

} and the hole bindings {(1, ∅) ↦→ 1}. Its

output is [1, 1] (through E-Hole-1) and then updates to [1, 2]. The
head of the output value 1 updates the head of the list construc-

tion 𝑎 to {(1, ∅) ↦→ 1}; {𝑎 ↦→(| |)
1_1
∅

} � 𝑎. The tail of the output
value [2] updates the tail of the list construction [𝑎] to {(1, ∅) ↦→
2}; {𝑎 ↦→(| |)

1_1
∅

} � [𝑎]. According to the three-way merge, the hole
bindings update to {(1, ∅) ↦→ 2}. �

The rule U-Cons says that the output value 𝑣 ′ should decom-
pose to two sub-values, which update the head expression and tail

expression respectively. The environments merge is the same as

that in U-App, while the hole bindings merge is different. This is

because there may be conflicts in Σ1 and Σ2. We also adopt the

principle that the updated value has a higher priority, so the rule

U-Cons apply three-way merge on hole bindings. The values bound

to holes in Σ1 or Σ2 that is different from that in Σ is selected to be

inserted into the updated hole bindings Σ′.

4.3.4 Recursion. Since recursion is not discussed in Sketch-n-Sketch

[11], here is an explanation of our approach. Although recursion

is not relevant with holes, it is essential to the expressiveness of a

language.

The U-Fix rule propagates the output value 𝑣 ′ to the expanded
expression 𝑒 (𝑓 𝑖𝑥 𝑒) which updates to 𝑒1 (𝑓 𝑖𝑥 𝑒2). If 𝑒1 is different
from 𝑒 , then 𝑒1 is selected, otherwise, 𝑒2 is selected.

4.4 Round-Tripping Properties

The forward evaluation and the backward evaluation form a lens

[6] to maintain consistency between source (AST of programs with

hole bindings) and view (output with hole closures). To ensure

the stability of the system, the relationship of the forward evalu-

ation and the backward evaluation should satisfy round-tripping

properties, i.e., GETPUT and WEAKPUTGET [12] defined as follows.

2161

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

Towards Bidirectional Live Programming

for Incomplete Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 12: The student modifies 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 in hole ∗3 to [1]

and 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 in hole ∗5 closure to [1, 2, 3].

Lemma 4.11 (GETPUT). If Σ;𝐸 � 𝑒 ⇒ 𝑣 and Σ;𝐸 � 𝑒 ⇐ 𝑣 �
Σ′;𝐸 � 𝑒 , then Σ′;𝐸 � 𝑒 ⇒ 𝑣 and Σ ⊆ Σ′.

Lemma 4.12 (WEAKPUTGET). If Σ;𝐸 � 𝑒 ⇐ 𝑣 ′ � Σ′;𝐸 ′ � 𝑒 ′ and
Σ′;𝐸 ′ � 𝑒 ′ ⇒ 𝑣 ′′, then Σ;𝐸 � 𝑒 ⇐ 𝑣 ′′ � Σ′;𝐸 ′ � 𝑒 ′.

The GETPUT Lemma requires that whenever the output has not

been updated, the same program and hole bindings as the original

one are obtained by backward evaluation. However, things are a

little different for the bidirectional evaluators in our approach. A

hole with a data structure decomposes to sub holes when it does

pattern matching in the forward evaluation, and it binds with the

data structure in hole bindings in the backward evaluation. There-

fore, Σ is a sub-set of the updated hole bindings Σ′. For example,
when hole (| |)𝑢𝐸 matches with 𝑥 :: 𝑥𝑠 , the binding of (| |)𝑢𝐸 with

(| |)𝑢.1𝐸 ::(| |)𝑢.2𝐸 is inserted into hole bindings. It’s easy to prove that

the inserted hole bindings does not affect the forward evaluation,

i.e., expression 𝑒 under 𝐸 and Σ′ still evaluates to v.
The WEAKPUTGET Lemma requires that: (1) the output value 𝑣 ′

updates the source program Σ;𝐸 � 𝑒 to Σ′;𝐸 ′ � 𝑒 ′; (2) 𝑒 ′ under
𝐸 ′ and Σ′ evaluates to 𝑣 ′′; (3) 𝑣 ′′ updates Σ;𝐸 � 𝑒 to the same

updated program Σ′;𝐸 ′ � 𝑒 ′. This property is important because it
ensures that 𝑣 ′ and 𝑣 ′′ update the program to get the same result.

We prove that the bidirectional evaluations with the three-way

merge satisfies WEAKPUTGET when considering that there are no

primitive rules and the control flow remains unchanged in the

backward evaluation.

5 TWO APPLICATIONS

In this section, we use quick sort and student grades, two nontrivial

examples, to illustrate the usefulness of our system in algorithm

teaching and program debugging.

5.1 Quick Sort

Suppose that we are teaching the quick sort algorithm. An incom-

plete program is given in Figure 7, where we define a recursive

function 𝑞𝑠𝑜𝑟𝑡 ; the auxiliary function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 is used to screen
out 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 and 𝑏𝑖𝑔𝑔𝑒𝑟 with pivot as the boundary, and 𝑞𝑠𝑜𝑟𝑡 is
recursively applied to 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 and 𝑏𝑖𝑔𝑔𝑒𝑟 and get 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 and
𝑏_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 , respectively. Now assume that we are not sure how to

produce the final result and we add a hole in Line 23.

Figure 13: The bindings of hole 1 in quick sort.

Our system provides two convenient ways for students to un-

derstand the behavior of programs. First, they can "see". Students

can observe the context of each recursive call of quick sort through

the Context window. Second, they can "edit". Students can edit the

"Context", changing the unknown value to the one they expect.

For example, when students tell the system that sorting the list [1]

should yield [1] (which is initially unknown), then the system will

show what the value should be for the hole in the context, which

helps them to guess what to fill in the hole.

Suppose the student runs the incomplete quick sort program and

gets the Context table on the right in Figure 12. Students may wish

to view the nested hole (e.g. *3) of the outer hole (e.g. *5), so they

could click the subitem and jump to its context. At this time, the

Context table displays the content on the left in Figure 12. "WHICH

IS THE OUTPUT" in UI shows the click path “{*5}·r_smaller(0)”.

Note that the selector in the "Context" header is designed to show

the hole names in the "Output" of the program, so both table headers

in Figure 12 show *5. Next, it is easy for students to understand

that the function 𝑞𝑠𝑜𝑟𝑡 applied to 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 list [1] results in [1],

so he/she modifies 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 to [1] in the Context like Figure 12.

In the same way back to the closure of the outermost hole {∗5},

students know that 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 should be [1, 2, 3] and modify the
Context again like the right context in Figure 12.

After students fill in the hole in the Context with the results they

expected, the hole-bindings in Figure 13 are generated through

backward evaluation. With the second hole-binding, students know

that when 𝑝𝑖𝑣𝑜𝑡 is 2 and 𝑟_𝑠𝑚𝑎𝑙𝑙𝑒𝑟 is [1], the value of hole ex-

pression 1 should be [2, 3]. Through observing the context of the
second hole binding, he/she might have reasoned that the hole

should actually be the connection of [𝑝𝑖𝑣𝑜𝑡] and 𝑟_𝑏𝑖𝑔𝑔𝑒𝑟 .
It is remarked that, for a hole in the program, our system provides

developers only with the value of the hole and its context (as part

of the output for one to modify); it does not infer the code for the

hole, though developers may benefit from the value and its context

to guess a possible code shape.

5.2 Student Grades

Consider that a teacher computes the students’ final grades at the

end of the semester. Suppose there are only three students, and

the teacher wants to score according to the weighted average of

homework, midterm, and final. He/she writes the program in Figure

8, where the function𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 applies to each student’s
score in Line 21.

Suppose that the program runs to get an incorrect output, say

[2701.5, 2345.9, 847.3]. The teacher does not know which part of

the expression in Line 19 was wrong, and he/she doubts the value

at ℎ𝑤𝑟 ∗ ℎ𝑤 . Therefore, he/she changes the expression in Line 19
to _ +𝑚𝑖𝑑𝑟 ∗𝑚𝑖𝑑𝑡𝑒𝑟𝑚 + 𝑓 𝑖𝑛𝑟 ∗ 𝑓 𝑖𝑛𝑎𝑙 and propagates the wrong

2162

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Xing Zhang Zhenjiang Hu∗

Figure 14: Hole-bindings of using [2701.5, 2345.9, 2847.3] to up-
date the program with a hole expression

output through backward evaluation to get the records in the Hole

bindings window (as shown in Figure 14). It is easy to know that

the value (2790, 2280, and 2640) of the hole expression 1 (which is

ℎ𝑤𝑟 ∗ℎ𝑤 originally) is wrong. Then the teacher observes the value

of ℎ𝑤𝑟 and ℎ𝑤 in the context of hole bindings and finds that the

value of ℎ𝑤𝑟 should be 0.3, rather than 30.
Note that the purpose of turning a suspected expression into

a hole is to observe its context and value to be sure that they are

what we want for this expression. The example just shows the

mechanism of using our work for debugging; in fact, the teacher

may choose to convert any expression into a hole, not just ℎ𝑤𝑟 ∗ℎ𝑤 .

Summary. These two examples and the example in Section 2

demonstrate the potential of our work in three areas: web develop-

ment, classic algorithms, and program debugging. These examples

are nontrivial and cover sufficient language constructs such as

conditionals, function calls, and recursions (similar to loops).

6 EFFICIENCY

We have implemented the core bidirectional evaluators based on

the framework of bidirectional live programming for incomplete

programs in our tool Bidirectional Preview. Our implementation

is written mostly in Elm, a functional language, with about 6, 000
lines of code.

To evaluate whether our framework is effective enough to give

the developers quick feedback after directly manipulating the out-

put, we measured the running time (in milliseconds) of the various

parts of the framework on the nontrivial example “table of states”

(used in Sketch-n-Sketch [11]). The selected program has 76 lines

of codes written in the language we defined. Note that in practice,

an incomplete program is usually not long, particularly in the live

programming setting. We’ve instrumented a timing mechanism

in our implementation, which can record running times for each

part of our implementation (such as times for parsing, forward and

backward evaluations) when our system is running.

We use different numbers of hole expressions to indicate the

degree of incompleteness of the same program. The more holes

there are, the more incomplete the program is. The holes were

introduced into some entries of the input table for the selected

program, which can be propagated to various places of the program

during evaluation. The experiments include four settings with 0, 1,

5, and 10 holes. We test up to 10 holes because there are generally

not many holes in an incomplete program at one time in practical

programming.

Table 1 shows a summary of our results averaged over 10 trials.

We confirm that the fluctuation range of most of the results is within

5%. The “HN” column shows the number of hole expressions in

the initial program. The “Env Merge” column shows the running

time of the environment merges, while the “HB Merge” column

shows the running time of the hole bindings merges. “Env Merge”

and “HB Merge” are parts of “Backward Evaluator” and they are

explained in Section 4.3.2.

In Table 1, as the number of holes in the program increase from 1

to 10, the time difference of forward evaluation is within 1𝑚𝑠 , almost
the same as that of the complete program. And it takes around the

same amount of time to parse and print code. However, with the

increase of holes, the time difference of backward evaluation is

greater, and the difference is up to 21𝑚𝑠 when there are 10 holes.
This is an acceptable increase compared to the time it takes to parse

code and HTML. The time to parse HTML code has also increased

slightly, and this is due to hole elements in the HTML page, which

take up some time.

There is a difference between the complete program and the

incomplete program in backward evaluation, and the difference

increases with the increase in the number of holes. This is because

the time of environments merge and hole-bindings merge increases

and accounts for most of the running time of the backward evalua-

tion, as can be seen from Table 1. In both merges, values need to

be compared. After adding holes into the definition of values, the

comparison becomes more complicated because a hole value is car-

ried with a closure, which can have nested hole values. Therefore,

the recursive comparison process is very time-consuming.

7 RELATEDWORK

Our work on bidirectional live programming is much related to

the work on program sketching, direct manipulation programming

system, live programming, and program debugging.

Program Sketching. Program sketching is a useful technique where

developers express their high-level insights using an incomplete

program as a sketch and leave the low details to the computer to

synthesize [15]. Justin et al. [10] propose a bidirectional evaluation

to propagate input-output examples through partially evaluated

sketches. It is a bidirectional evaluation of incomplete programs,

but there is a sharp difference from ours: it propagates input-output

example constraints to the holes, whereas our method propagates

output values back to the program. In particular, as our intention

is to directly manipulate the output of incomplete programs, both

holes and their closures are editable in our method but not editable

in [10].

Direct Manipulation Programming System. Our approach is built

upon the bidirectional evaluation in Sketch-n-Sketch [11], with a

significant extension from complete programs to incomplete pro-

grams. In fact, our framework is the first to perform direct manipu-

lation on incomplete programs, which is in sharp contrast to the

traditional direct manipulation systems, such as [1, 3, 7, 16], which

can work on only complete programs.

2163

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

Towards Bidirectional Live Programming

for Incomplete Programs ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 1: Running Time of Bidirectional Evaluations

HN Parse Code Forward Eval Parse HTML Backward Eval Print Env Merge HB Merge

0 36.3 3.3 31 8.17 1.13 8.4 1

1 37.07 3.43 39.1 13.33 1.17 9.77 1.67

5 36.37 3.7 38.4 21.1 1.07 11.47 5.27

10 35.63 4.27 46.67 29.97 1 16.43 6.53

HN: Number of holes in program; Env Merge: Environment Merge; HB Merge: Hole Bindings Merge
Parse Code refers to the “Parser” in Figure 6; Forward Eval refers to the “Forward Evaluator” described in Section 4.2; Parse HTML
refers to “HTML Parser”; Backward Eval refers to “Backward Evaluato” described in Section 4.3; Print refers to “Printer” in Figure 6.

Live Programming. Live programming allows developers to edit

the code of a running program and immediately see the effect of

the code changes [2]. To deal with incomplete programs, Omar

et al. [14] proposed to model incomplete functional programs as

expressions with holes. Inspired by this work, we extend it from

"unidirectional" to "bidirectional".

Recently, Omar et al. [13] import hole expressions to define a

typed livelit calculus, and the system continuously gathers closures

associated with the hole that the livelit is filling. Livelit helps de-

velopers with some special editing tools, including colors, tabular

data, and diagrams, through user-defined GUIs to fill holes in the

program online. Essentially, this approach is still unidirectional.

Although our work is also to fill in the hole expressions, we do it

by editing the output and propagating it back to the program.

Program Debugging. Program debugging [8] is related to backward

evaluationbecause when the output of the wrong test case is known,

backward evaluation can help to locate the wrong code fragments.

For instance, Faddegon and Chitil [5] present an approach to algo-

rithmic debugging that builds a computation tree from the runtime

value observations by adding annotations to suspected modules, of

which the aim is to limit the scope of debugging. As demonstrated

in the paper, our framework can be used for debugging, where the

suspicious expression can be set as a hole and the observation in

hole bindings and hole closures helps with decision-making. As our

future work, we are interested in looking into the deep relationship

between algorithmic debugging and backward transformation of

incomplete programs.

8 CONCLUSION

We present the first framework to support bidirectional live pro-

gramming for incomplete programs. Essentially, it can be consid-

ered either as bidirectionalization of the technique of live program-

ming for incomplete programs or as an extension of the framework

of bidirectional live programming from complete programs to in-

complete programs. The challenge lies in the richer output (of

incomplete programs) which makes backward evaluation difficult.

In particular, the holes need much attention because they can be

instantiated many times and decomposed into sub-holes during

evaluation. We carefully design the algorithms for efficient bidirec-

tional evaluation and implement the tool Bidirectional Preview that

is shown to be useful to develop various HTML applications inter-

actively. In addition, we highlight the usefulness of bidirectional

live programming of incomplete programs in algorithm teaching

and program debugging. It is worth noting that although only func-

tional programs are considered in this paper, the framework can be

adapted to other programs such as imperative programs.

REFERENCES
[1] Gideon Avrahami, Kenneth P. Brooks, and Marc H. Brown. 1989. A Two-View

Approach to Constructing User Interfaces. SIGGRAPH Comput. Graph. 23, 3 (July
1989), 137–146. https://doi.org/10.1145/74334.74347

[2] Sebastian Burckhardt, Manuel Fahndrich, Peli de Halleux, SeanMcDirmid, Michal
Moskal, Nikolai Tillmann, and Jun Kato. 2013. It’s Alive! Continuous Feedback
in UI Programming. SIGPLAN Not. 48, 6 (June 2013), 95–104. https://doi.org/10.
1145/2499370.2462170

[3] Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Program-
matic and direct manipulation, together at last. Proceedings of the 37th ACM
SIGPLAN Conference on Programming Language Design and Implementation (Jun
2016). https://doi.org/10.1145/2908080.2908103

[4] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy Schürr,
and James F. Terwilliger. 2009. Bidirectional Transformations: A Cross-Discipline
Perspective. In Theory and Practice of Model Transformations, Richard F. Paige
(Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 260–283.

[5] Maarten Faddegon and Olaf Chitil. 2015. Algorithmic Debugging of Real-World
Haskell Programs: Deriving Dependencies from the Cost Centre Stack. SIGPLAN
Not. 50, 6 (June 2015), 33–42. https://doi.org/10.1145/2813885.2737985

[6] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. 2007. Combinators for Bidirectional Tree Transformations: A
Linguistic Approach to the View-Update Problem. ACM Trans. Program. Lang.
Syst. 29, 3 (May 2007), 17–es. https://doi.org/10.1145/1232420.1232424

[7] Koumei Fukahori, Daisuke Sakamoto, Jun Kato, and Takeo Igarashi. 2014. Cap-
Studio: An Interactive Screencast for Visual Application Development. In CHI
’14 Extended Abstracts on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI EA ’14). Association for Computing Machinery, New York, NY,
USA, 1453–1458. https://doi.org/10.1145/2559206.2581138

[8] Alex Groce, Mohammad Amin Alipour, Chaoqiang Zhang, Yang Chen, and John
Regehr. 2016. Cause reduction: delta debugging, even without bugs. Softw. Test.
Verification Reliab. 26, 1 (2016), 40–68. https://doi.org/10.1002/stvr.1574

[9] K. kwok and G. Webster. 2016. Carbide Alpha. https://alpha.trycarbide.com/
[10] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Program sketching

with live bidirectional evaluation. Proceedings of the ACM on Programming
Languages 4, ICFP (Aug 2020), 1–29. https://doi.org/10.1145/3408991

[11] Mikaël Mayer, Viktor Kuncak, and Ravi Chugh. 2018. Bidirectional evaluation
with direct manipulation. Proceedings of the ACM on Programming Languages 2,
OOPSLA (Oct 2018), 1–28. https://doi.org/10.1145/3276497

[12] Keisuke Nakano. 2019. Towards a Complete Picture of Lens Laws.
arXiv:1910.10421 [cs.PL]

[13] Cyrus Omar, David Moon, Andrew Blinn, Ian Voysey, Nick Collins, and Ravi
Chugh. 2021. Filling Typed Holes with Live GUIs (PLDI 2021). Association for
Computing Machinery, New York, NY, USA, 511–525. https://doi.org/10.1145/
3453483.3454059

[14] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2018. Live
Functional Programming with Typed Holes. arXiv:1805.00155 [cs.PL]

[15] Armando Solar-Lezama. 2013. Program Sketching. Int. J. Softw. Tools Technol.
Transf. 15, 5–6 (Oct. 2013), 475–495. https://doi.org/10.1007/s10009-012-0249-7

[16] Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. 2012. Au-
tomating Presentation Changes in Dynamic Web Applications via Collaborative
Hybrid Analysis (FSE ’12). Association for Computing Machinery, New York, NY,
USA, Article 16, 11 pages. https://doi.org/10.1145/2393596.2393614

2164

Authorized licensed use limited to: Peking University. Downloaded on March 04,2023 at 14:13:07 UTC from IEEE Xplore. Restrictions apply.

